全国人才培养工程证书:电脑主板知识 - 王伟 MySpace聚友博客

来源:百度文库 编辑:北方网 时间:2019/08/20 22:15:46
',1)">
一:
主板 : 主板结构
由于主板是电脑中各种设备的连接载体,而这些设备的各不相同的,而且主板本身也有芯片组,各种I/O控制芯片,扩展插槽,扩展接口,电源插座等元器件,因此制定一个标准以协调各种设备的关系是必须的。所谓主板结构就是根据主板上各元器件的布局排列方式,尺寸大小,形状,所使用的电源规格等制定出的通用标准,所有主板厂商都必须遵循。
主板结构分为AT、Baby-AT、ATX、Micro ATX、LPX、NLX、Flex ATX、EATX、WATX以及BTX等结构。其中,AT和Baby-AT是多年前的老主板结构,现在已经淘汰;而LPX、NLX、Flex ATX则是ATX的变种,多见于国外的品牌机,国内尚不多见;EATX和WATX则多用于服务器/工作站主板;ATX是目前市场上最常见的主板结构,扩展插槽较多,PCI插槽数量在4-6个,大多数主板都采用此结构;Micro ATX又称Mini ATX,是ATX结构的简化版,就是常说的“小板”,扩展插槽较少,PCI插槽数量在3个或3个以下,多用于品牌机并配备小型机箱;而BTX则是英特尔制定的最新一代主板结构。
在PC推出后的第三年即1984年,IBM公布了PCAT。AT主板的尺寸为13"×12",板上集成有控制芯片和8个I/0扩充插槽。由于AT主板尺寸较大,因此系统单元(机箱)水平方向增加了2英寸,高度增加了1英寸,这一改变也是为了支持新的较大尺寸的AT格式适配卡。将8位数据、20位地址的XT扩展槽改变到16位数据、24位地址的AT扩展槽。为了保持向下兼容,它保留62脚的XT扩展槽,然后在同列增加36脚的扩展槽。XT扩展卡仍使用62脚扩展槽(每侧31脚),AT扩展卡使用共98脚的的两个同列扩展槽。这种PC AT总线结构演变策略使得它仍能在当今的任何一个PC Pentium/PCI系统上正常运行。
PC AT的初始设计是让扩展总线以微处理器相同的时钟速率来运行,即6MHz 的286,总线也是6MHz;8MHz的微处理器,则总线就是8MHz。随着微处理器速度的增加,增加扩展总线的速度也很简单。后来一些PC AT系统的扩展总线速度达到了10和12MHz。不幸的是,某些适配器不能以这样的速度工作或者能很好得工作。因此,绝大多数的PC AT仍以8或8.33MHz为扩展总线的速率,在此速度下绝大多数适配器都不能稳定工作。
AT主板尺寸较大,板上能放置较多的元件和扩充插槽。但随着电子元件集成化程度的提高,相同功能的主板不再需要全AT的尺寸。因此在1990年推出了Baby/Mini AT主板规范,简称为Baby AT主板。
Baby AT主板是从最早的XT主板继承来的,它的大小为15"×8.5",比AT主板是略长,而宽度大大窄于AT主板。Baby AT主板沿袭了AT主板的I/0扩展插槽、键盘插座等外设接口及元件的摆放位置,而对内存槽等内部元件结构进行了紧缩,再加上大规模集成电路使内部元件减少,使得Baby AT主板比AT主板布局紧凑而功能不减。
但随着计算机硬件技术的进一步发展,计算机主板上集成功能越来越多,Baby AT主板有点不负重荷,而AT主板又过于庞大,于是很多主板商又采取另一种折衷的方案,即一方面取消主板上使用较少的零部件以压缩空间(如将I/0扩展槽减为7个甚至6个,另一方面将Baby AT主板适当加宽,增加使用面积,这就形成了众多的规格不一的Baby AT主板。当然这些主板对基本I/0插槽、外围设备接口及主板固定孔的位置不加改动,使得即使是最小的Baby AT主板也能在标准机箱上使用。最常见的Baby AT主板尺寸是3/4Baby AT主板(26.5cm×22cm即10.7"×8.7"),采用7个I/0扩展槽。
由于Baby AT主板市场的不规范和AT主板结构过于陈旧,英特尔在95年1月公布了扩展AT主板结构,即ATX(AT extended)主板标准。这一标准得到世界主要主板厂商支持,目前已经成为最广泛的工业标准。97年2月推出了ATX2.01版。
ATX结构主板
Baby AT结构标准的首先表现在主板横向宽度太窄(一般为22cm),使得直接从主板引出接口的空间太小。大大限制了对外接口的数量,这对于功能载来越强、对外接口越来越多的微机来说,是无法克服的缺点。其次,Baby AT主板上CPU和I/0插槽的位置安排不合理。早期的CPU由于性能低、功耗小,散热的要求不高。而今天的CPU性能高、功耗大,为了使其工作稳定,必须要有良好的散热装置,加装散热片或风扇,因而大大增加了CPU的高度。在AT结构标准里CPU位于扩展槽的下方,使得很多全长的扩展卡插不上去或插上去后阻碍CPU风扇运转。内存的位置也不尽合理。早期的计算机内存大小是固定的,对安装位置无特殊要求。Baby AT主板在结构上按习惯把内存插槽安放在机箱电源的下方,安装、更换内存条往往要拆下电源或主板,很不方便。内存条散热条件也不好。此外,由于软硬盘控制器及软硬盘支架没有特定的位置,这造成了软硬盘线缆过长,增加了电脑内部连线的混乱,降低了电脑的中靠性。甚至由于硬盘线缆过长,使很多高速硬盘的转速受到影响。ATX主板针对AT和Baby AT主板的缺点做了以下改进:
主板外形在Baby AT的基础上旋转了90度,其几何尺寸改为30.5cm×24.4cm。 采用7个I/O插槽,CPU与I/O插槽、内存插槽位置更加合理。 优化了软硬盘驱动器接口位置。 提高了主板的兼容性与可扩充性。 采用了增强的电源管理,真正实现电脑的软件开/关机和绿色节能功能。
Micro ATX保持了ATX标准主板背板上的外设接口位置,与ATX兼容。
MATX结构主板
Micro ATX主板把扩展插槽减少为3-4只,DIMM插槽为2-3个,从横向减小了主板宽度,其总面积减小约0.92平方英寸,比ATX标准主板结构更为紧凑。按照Micro ATX标准,板上还应该集成图形和音频处理功能。目前很多品牌机主板使用了Micro ATX标准,在DIY市场上也常能见到Micro ATX主板。
BTX是英特尔提出的新型主板架构Balanced Technology Extended的简称,是ATX结构的替代者,这类似于前几年ATX取代AT和Baby AT一样。革命性的改变是新的BTX规格能够在不牺牲性能的前提下做到最小的体积。新架构对接口、总线、设备将有新的要求。重要的是目前所有的杂乱无章,接线凌乱,充满噪音的PC机将很快过时。当然,新架构仍然提供某种程度的向后兼容,以便实现技术革命的顺利过渡。
BTX具有如下特点:
支持Low-profile,也即窄板设计,系统结构将更加紧凑; 针对散热和气流的运动,对主板的线路布局进行了优化设计; 主板的安装将更加简便,机械性能也将经过最优化设计。
而且,BTX提供了很好的兼容性。目前已经有数种BTX的派生版本推出,根据板型宽度的不同分为标准BTX (325.12mm), microBTX (264.16mm)及Low-profile的picoBTX (203.20mm),以及未来针对服务器的Extended BTX。而且,目前流行的新总线和接口,如PCI Express和串行ATA等,也将在BTX架构主板中得到很好的支持。
值得一提的是,新型BTX主板将通过预装的SRM(支持及保持模块)优化散热系统,特别是对CPU而言。另外,散热系统在BTX的术语中也被称为热模块。一般来说,该模块包括散热器和气流通道。目前已经开发的热模块有两种类型,即full-size及low-profile。
得益于新技术的不断应用,将来的BTX主板还将完全取消传统的串口、并口、PS/2等接口。
二:主板 : 芯片组
芯片组(Chipset)是主板的核心组成部分,如果说中央处理器(CPU)是整个电脑系统的心脏,那么芯片组将是整个身体的躯干。在电脑界称设计芯片组的厂家为Core Logic,Core的中文意义是核心或中心,光从字面的意义就足以看出其重要性。对于主板而言,芯片组几乎决定了这块主板的功能,进而影响到整个电脑系统性能的发挥,芯片组是主板的灵魂。芯片组性能的优劣,决定了主板性能的好坏与级别的高低。这是因为目前CPU的型号与种类繁多、功能特点不一,如果芯片组不能与CPU良好地协同工作,将严重地影响计算机的整体性能甚至不能正常工作。
主板芯片组几乎决定着主板的全部功能,其中CPU的类型、主板的系统总线频率,内存类型、容量和性能,显卡插槽规格是由芯片组中的北桥芯片决定的;而扩展槽的种类与数量、扩展接口的类型和数量(如USB2.0/1.1,IEEE1394,串口,并口,笔记本的VGA输出接口)等,是由芯片组的南桥决定的。还有些芯片组由于纳入了3D加速显示(集成显示芯片)、AC'97声音解码等功能,还决定着计算机系统的显示性能和音频播放性能等。
台式机芯片组要求有强大的性能,良好的兼容性,互换性和扩展性,对性价比要求也最高,并适度考虑用户在一定时间内的可升级性,扩展能力在三者中最高。在最早期的笔记本设计中并没有单独的笔记本芯片组,均采用与台式机相同的芯片组,随着技术的发展,笔记本专用CPU的出现,就有了与之配套的笔记本专用芯片组。笔记本芯片组要求较低的能耗,良好的稳定性,但综合性能和扩展能力在三者中却也是最低的。服务器/工作站芯片组的综合性能和稳定性在三者中最高,部分产品甚至要求全年满负荷工作,在支持的内存容量方面也是三者中最高,能支持高达十几GB甚至几十GB的内存容量,而且其对数据传输速度和数据安全性要求最高,所以其存储设备也多采用SCSI接口而非IDE接口,而且多采用RAID方式提高性能和保证数据的安全性。
到目前为止,能够生产芯片组的厂家有英特尔(美国)、VIA(中国台湾)、SiS(中国台湾)、ULI(中国台湾)、AMD(美国)、NVIDIA(美国)、ATI(加拿大)、ServerWorks(美国)、IBM(美国)、HP(美国)等为数不多的几家,其中以英特尔和NVIDIA以及VIA的芯片组最为常见。在台式机的英特尔平台上,英特尔自家的芯片组占有最大的市场份额,而且产品线齐全,高、中、低端以及整合型产品都有,其它的芯片组厂商VIA、SIS、ULI以及最新加入的ATI和NVIDIA几家加起来都只能占有比较小的市场份额,除NVIDIA之外的其它厂家主要是在中低端和整合领域,NVIDIA则只具有中、高端产品,缺乏低端产品,产品线都不完整。在AMD平台上,AMD自身通常是扮演一个开路先锋的角色,产品少,市场份额也很小,而VIA以前却占有AMD平台芯片组最大的市场份额,但现在却受到后起之秀NVIDIA的强劲挑战,后者凭借其nForce2、nForce3以及现在的nForce4系列芯片组的强大性能,成为AMD平台最优秀的芯片组产品,进而从VIA手里夺得了许多市场份额,目前已经成为AMD平台上市场占用率最大的芯片组厂商,而SIS与ULI依旧是扮演配角,主要也是在中、低端和整合领域。笔记本方面,英特尔平台具有绝对的优势,所以英特尔自家的笔记本芯片组也占据了最大的市场分额,其它厂家都只能扮演配角以及为市场份额极小的AMD平台设计产品。服务器/工作站方面,英特尔平台更是绝对的优势地位,英特尔自家的服务器/工作站芯片组产品占据着绝大多数的市场份额,但在基于英特尔架构的高端多路服务器领域方面,IBM和HP却具有绝对的优势,例如IBM的XA32以及HP的F8都是非常优秀的高端多路服务器芯片组产品,只不过都是只应用在本公司的服务器产品上而名声不是太大罢了;而AMD服务器/工作站平台由于市场份额较小,以前主要都是采用AMD自家的芯片组产品,现在也有部分开始采用NVIDIA的产品。值得注意的是,曾经在基于英特尔架构的服务器/工作站芯片组领域风光无限的ServerWorks在被Broadcom收购之后已经彻底退出了芯片组市场;而ULI也已经被NVIDIA收购,也极有可能退出芯片组市场。
芯片组的技术这几年来也是突飞猛进,从ISA、PCI、AGP到PCI-Express,从ATA到SATA,Ultra DMA技术,双通道内存技术,高速前端总线等等 ,每一次新技术的进步都带来电脑性能的提高。2004年,芯片组技术又会面临重大变革,最引人注目的就是PCI Express总线技术,它将取代PCI和AGP,极大的提高设备带宽,从而带来一场电脑技术的革命。另一方面,芯片组技术也在向着高整合性方向发展,例如AMD Athlon 64 CPU内部已经整合了内存控制器,这大大降低了芯片组厂家设计产品的难度,而且现在的芯片组产品已经整合了音频,网络,SATA,RAID等功能,大大降低了用户的成本。
三:主板 : 集成芯片
集成芯片是指主板整合了显卡,声卡或者网卡的型号和类型
四:主板 : 什么是音频芯片
板载音效是指主板所整合的声卡芯片型号或类型。
声卡是一台多媒体电脑的主要设备之一,现在的声卡一般有板载声卡和独立声卡之分。在早期的电脑上并没有板载声卡,电脑要发声必须通过独立声卡来实现。随着主板整合程度的提高以及CPU性能的日益强大,同时主板厂商降低用户采购成本的考虑,板载声卡出现在越来越多的主板中,目前板载声卡几乎成为主板的标准配置了,没有板载声卡的主板反而比较少了。
板载ALC650声卡芯片
板载声卡一般有软声卡和硬声卡之分。这里的软硬之分,指的是板载声卡是否具有声卡主处理芯片之分,一般软声卡没有主处理芯片,只有一个解码芯片,通过CPU的运算来代替声卡主处理芯片的作用。而板载硬声卡带有主处理芯片,很多音效处理工作就不再需要CPU参与了。
AC'97
AC'97的全称是Audio CODEC'97,这是一个由英特尔、雅玛哈等多家厂商联合研发并制定的一个音频电路系统标准。它并不是一个实实在在的声卡种类,只是一个标准。目前最新的版本已经达到了2.3。现在市场上能看到的声卡大部分的CODEC都是符合AC'97标准。厂商也习惯用符合CODEC的标准来衡量声卡,因此很多的主板产品,不管采用的何种声卡芯片或声卡类型,都称为AC'97声卡。
板载声卡优缺点
因为板载软声卡没有声卡主处理芯片,在处理音频数据的时候会占用部分CPU资源,在CPU主频不太高的情况下会略微影响到系统性能。目前CPU主频早已用GHz来进行计算,而音频数据处理量却增加的并不多,相对于以前的CPU而言,CPU资源占用旅已经大大降低,对系统性能的影响也微乎其微了,几乎可以忽略。
“音质”问题也是板载软声卡的一大弊病,比较突出的就是信噪比较低,其实这个问题并不是因为板载软声卡对音频处理有缺陷造成的,主要是因为主板制造厂商设计板载声卡时的布线不合理,以及用料做工等方面,过于节约成本造成的。
而对于板载的硬声卡,则基本不存在以上两个问题,其性能基本能接近并达到一般独立声卡,完全可以满足普通家庭用户的需要。
集成声卡最大的优势就是性价比,而且随着声卡驱动程序的不断完善,主板厂商的设计能力的提高,以及板载声卡芯片性能的提高和价格的下降,板载声卡越来越得到用户的认可。
板载声卡的劣势却正是独立声卡的优势,而独立声卡的劣势又正是板载声卡的优势。独立声卡从几十元到几千元有着各种不同的档次,从性能上讲集成声卡完全不输给中低端的独立声卡,在性价比上集成声卡又占尽优势。在中低端市场,在追求性价的用户中,集成声卡是不错的选择。
五:主板 : AGP插槽标准
AGP是Accelerated Graphics Port(图形加速端口)的缩写,是显示卡的专用扩展插槽,它是在PCI图形接口的基础上发展而来的。AGP规范是英特尔公司解决电脑处理(主要是显示)3D图形能力差的问题而出台的。AGP并不是一种总线,而是一种接口方式。随着3D游戏做得越来越复杂,使用了大量的3D特效和纹理,使原来传输速率为133MB/sec的PCI总线越来越不堪重负,籍此原因Intel才推出了拥有高带宽的AGP接口。这是一种与PCI总线迥然不同的图形接口,它完全独立于PCI总线之外,直接把显卡与主板控制芯片联在一起,使得3D图形数据省略了越过PCI总线的过程,从而很好地解决了低带宽PCI接口造成的系统瓶颈问题。可以说,AGP代替PCI成为新的图形端口是技术发展的必然。
AGP标准分为AGP1.0(AGP 1X和AGP 2X),AGP2.0(AGP 4X),AGP3.0(AGP 8X)。
AGP 1.0(AGP1X、AGP2X)
1996年7月AGP 1.0 图形标准问世,分为1X和2X两种模式,数据传输带宽分别达到了266MB/s和533MB/s。这种图形接口规范是在66MHz PCI2.1规范基础上经过扩充和加强而形成的,其工作频率为66MHz,工作电压为3.3v,在一段时间内基本满足了显示设备与系统交换数据的需要。这种规范中的AGP带宽很小,现在已经被淘汰了,只有在前几年的老主板上还见得到。
AGP2.0(AGP4X)
显示芯片的飞速发展,图形卡单位时间内所能处理的数据呈几何级数成倍增长,AGP 1.0 图形标准越来越难以满足技术的进步了,由此AGP 2.0便应运而生了。1998年5月份,AGP 2.0 规范正式发布,工作频率依然是66MHz,但工作电压降低到了1.5v,并且增加了4x模式,这样它的数据传输带宽达到了1066MB/sec,数据传输能力大大地增强了。
AGP Pro
AGP Pro接口与AGP 2.0同时推出,这是一种为了满足显示设备功耗日益加大的现实而研发的图形接口标准,应用该技术的图形接口主要的特点是比AGP 4x略长一些,其加长部分可容纳更多的电源引脚,使得这种接口可以驱动功耗更大(25-110w)或者处理能力更强大的AGP显卡。这种标准其实是专为高端图形工作站而设计的,完全兼容AGP 4x规范,使得AGP 4x的显卡也可以插在这种插槽中正常使用。AGP Pro在原有AGP插槽的两侧进行延伸,提供额外的电能。它是用来增强,而不是取代现有AGP插槽的功能。根据所能提供能量的不同,可以把AGP Pro细分为AGP Pro110和AGP Pro50。在某些高档台式机主板上也能见到AGP Pro插槽,例如华硕的许多主板。
AGP3.0(AGP8X)
2000年8月,Intel推出AGP3.0规范,工作电压降到0.8V,为了防止用户将非0.8V显卡使用在AGP 0.8V插槽上,Intel专门为AGP 3.0插槽和主板增加了电子ID,可以支持1.5V和0.8V信号电压。并增加了8x模式,这样它的数据传输带宽达到了2133MB/sec,数据传输能力相对于AGP 4X成倍增长,能较好的满足当前显示设备的带宽需求。
不同AGP接口的模式传输方式不同。1X模式的AGP,工作频率达到了PCI总线的两倍—66MHz,传输带宽理论上可达到266MB/s。AGP 2X工作频率同样为66MHz,但是它使用了正负沿(一个时钟周期的上升沿和下降沿)触发的工作方式,在这种触发方式中在一个时钟周期的上升沿和下降沿各传送一次数据,从而使得一个工作周期先后被触发两次,使传输带宽达到了加倍的目的,而这种触发信号的工作频率为133MHz,这样AGP 2X的传输带宽就达到了266MB/s×2(触发次数)=533MB/s的高度。AGP 4X仍使用了这种信号触发方式,只是利用两个触发信号在每个时钟周期的下降沿分别引起两次触发,从而达到了在一个时钟周期中触发4次的目的,这样在理论上它就可以达到266MB/s×2(单信号触发次数)×2(信号个数)=1066MB/s的带宽了。在AGP 8X规范中,这种触发模式仍然使用,只是触发信号的工作频率变成266MHz,两个信号触发点也变成了每个时钟周期的上升沿,单信号触发次数为4次,这样它在一个时钟周期所能传输的数据就从AGP4X的4倍变成了8倍,理论传输带宽将可达到266MB/s×4(单信号触发次数)×2(信号个数)=2133MB/s的高度了。
AGP标准
目前常用的AGP接口为AGP4X、AGP PRO、AGP通用及AGP8X接口。需要说明的是由于AGP3.0显卡的额定电压为0.8—1.5V,因此不能把AGP8X的显卡插接到AGP1.0规格的插槽中。这就是说AGP8X规格与旧有的AGP1X/2X模式不兼容。而对于AGP4X系统,AGP8X显卡仍旧在其上工作,但仅会以AGP4X模式工作,无法发挥AGP8X的优势。
六:主板 : BIOS
计算机用户在使用计算机的过程中,都会接触到BIOS,它在计算机系统中起着非常重要的作用。一块主板性能优越与否,很大程度上取决于主板上的BIOS管理功能是否先进。
BIOS(Basic Input/Output System,基本输入输出系统)全称是ROM-BIOS,是只读存储器基本输入/输出系统的简写,它实际是一组被固化到电脑中,为电脑提供最低级最直接的硬件控制的程序,它是连通软件程序和硬件设备之间的枢纽,通俗地说,BIOS是硬件与软件程序之间的一个“转换器”或者说是接口(虽然它本身也只是一个程序),负责解决硬件的即时要求,并按软件对硬件的操作要求具体执行。
BIOS芯片是主板上一块长方型或正方型芯片,BIOS中主要存放:
自诊断程序:通过读取CMOS RAM中的内容识别硬件配置,并对其进行自检和初始化; CMOS设置程序:引导过程中,用特殊热键启动,进行设置后,存入CMOS RAM中; 系统自举装载程序:在自检成功后将磁盘相对0道0扇区上的引导程序装入内存,让其运行以装入DOS系统; 主要I/O设备的驱动程序和中断服务;
由于BIOS直接和系统硬件资源打交道,因此总是针对某一类型的硬件系统,而各种硬件系统又各有不同,所以存在各种不同种类的BIOS,随着硬件技术的发展,同一种BIOS也先后出现了不同的版本,新版本的BIOS比起老版本来说,功能更强。
BIOS的功能
目前市场上主要的BIOS有AMI BIOS和Award BIOS以及Phoenix BIOS,其中,Award和Phoenix已经合并,二者的技术也互有融合。从功能上看,BIOS分为三个部分:
自检及初始化程序; 硬件中断处理; 程序服务请求;
(一)自检及初始化
这部分负责启动电脑,具体有三个部分,第一个部分是用于电脑刚接通电源时对硬件部分的检测,也叫做加电自检(Power On Self Test,简称POST),功能是检查电脑是否良好,通常完整的POST自检将包括对CPU,640K基本内存,1M以上的扩展内存,ROM,主板,CMOS存储器,串并口,显示卡,软硬盘子系统及键盘进行测试,一旦在自检中发现问题,系统将给出提示信息或鸣笛警告。自检中如发现有错误,将按两种情况处理:对于严重故障(致命性故障)则停机,此时由于各种初始化操作还没完成,不能给出任何提示或信号;对于非严重故障则给出提示或声音报警信号,等待用户处理。
第二个部分是初始化,包括创建中断向量、设置寄存器、对一些外部设备进行初始化和检测等,其中很重要的一部分是BIOS设置,主要是对硬件设置的一些参数,当电脑启动时会读取这些参数,并和实际硬件设置进行比较,如果不符合,会影响系统的启动。
最后一个部分是引导程序,功能是引导DOS或其他操作系统。BIOS先从软盘或硬盘的开始扇区读取引导记录,如果没有找到,则会在显示器上显示没有引导设备,如果找到引导记录会把电脑的控制权转给引导记录,由引导记录把操作系统装入电脑,在电脑启动成功后,BIOS的这部分任务就完成了。
(二)程序服务处理和硬件中断处理
这两部分是两个独立的内容,但在使用上密切相关。
程序服务处理程序主要是为应用程序和操作系统服务,这些服务主要与输入输出设备有关,例如读磁盘、文件输出到打印机等。为了完成这些操作,BIOS必须直接与计算机的I/O设备打交道,它通过端口发出命令,向各种外部设备传送数据以及从它们那儿接收数据,使程序能够脱离具体的硬件操作,而硬件中断处理则分别处理PC机硬件的需求,因此这两部分分别为软件和硬件服务,组合到一起,使计算机系统正常运行。
BIOS的服务功能是通过调用中断服务程序来实现的,这些服务分为很多组,每组有一个专门的中断。例如视频服务,中断号为10H;屏幕打印,中断号为05H;磁盘及串行口服务,中断14H等。每一组又根据具体功能细分为不同的服务号。应用程序需要使用哪些外设、进行什么操作只需要在程序中用相应的指令说明即可,无需直接控制。
CMOS是互补金属氧化物半导体的缩写。其本意是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片。在这里通常是指电脑主板上的一块可读写的RAM芯片。它存储了电脑系统的实时钟信息和硬件配置信息等。系统在加电引导机器时,要读取CMOS信息,用来初始化机器各个部件的状态。它靠系统电源和后备电池来供电,系统掉电后其信息不会丢失。
CMOS与BIOS的区别
由于CMOS与BIOS都跟电脑系统设置密切相关,所以才有CMOS设置和BIOS设置的说法。也正因此,初学者常将二者混淆。CMOS RAM是系统参数存放的地方,而BIOS中系统设置程序是完成参数设置的手段。因此,准确的说法应是通过BIOS设置程序对CMOS参数进行设置。而我们平常所说的CMOS设置和BIOS设置是其简化说法,也就在一定程度上造成了两个概念的混淆。
升级BIOS的作用
现在的BIOS芯片都采用了Flash ROM,都能通过特定的写入程序实现BIOS的升级,升级BIOS主要有两大目的:
免费获得新功能
升级BIOS最直接的好处就是不用花钱就能获得许多新功能,比如能支持新频率和新类型的CPU,例如以前的某些老主板通过升级BIOS支持图拉丁核心Pentium III和Celeron,现在的某些主板通过升级BIOS能支持最新的Prescott核心Pentium 4E CPU;突破容量限制,能直接使用大容量硬盘;获得新的启动方式;开启以前被屏蔽的功能,例如英特尔的超线程技术,VIA的内存交错技术等;识别其它新硬件等。
解决旧版BIOS中的BUG
BIOS既然也是程序,就必然存在着BUG,而且现在硬件技术发展日新月异,随着市场竞争的加剧,主板厂商推出产品的周期也越来越短,在BIOS编写上必然也有不尽如意的地方,而这些BUG常会导致莫名其妙的故障,例如无故重启,经常死机,系统效能低下,设备冲突,硬件设备无故“丢失”等等。在用户反馈以及厂商自己发现以后,负责任的厂商都会及时推出新版的BIOS以修正这些已知的BUG,从而解决那些莫名其妙的故障。
由于BIOS升级具有一定的危险性,各主板厂商针对自己的产品和用户的实际需求,也开发了许多BIOS特色技术。例如BIOS刷新方面的有著名的技嘉的@BIOS Writer,支持技嘉主板在线自动查找新版BIOS并自动下载和刷新BIOS,免除了用户人工查找新版BIOS的麻烦,也避免了用户误刷不同型号主板BIOS的危险,而且技嘉@BIOS还支持许多非技嘉主板在windows下备份和刷新BIOS;其它相类似的BIOS特色技术还有华硕的Live Update,升技的Abit Flash Menu,QDI的Update Easy,微星的Live Update 3等等,微星的Live Update 3除了主板BIOS,对微星出品的显卡BIOS以及光存储设备的Firmware也能自动在线刷新,是一款功能非常强大的微星产品专用工具。此外,英特尔原装主板的Express BIOS Update技术也支持在windows下刷新BIOS,而且此技术是BIOS文件与刷新程序合一的可执行程序,非常适合初学者使用。在预防BIOS被破坏以及刷新失败方面有技嘉的双BIOS技术,QDI的金刚锁技术,英特尔原装主板的Recovery BIOS技术等等。
除了厂商的新版BIOS之外,其实我们自己也能对BIOS作一定程度上的修改而获得某些新功能,例如更改能源之星LOGO,更改全屏开机画面,获得某些品牌主板的特定功能(例如为非捷波主板添加捷波恢复精灵模块),添加显卡BIOS模块拯救BIOS损坏的显卡,打开被主板厂商屏蔽了的芯片组功能,甚至支持新的CPU类型,直接支持大容量的硬盘而不用DM之类的软件等等。不过这些都需要对BIOS非常熟悉而且有一定的动手能力和经验以后才能去做。
七:主板 : IDE接口标准
IDE是Integrated Device Electronics的简称,是一种硬盘的传输接口,它有另一个名称叫做ATA(AT Attachment),这两个名词都有厂商在用,指的是相同的东西。IDE的规格后来有所进步,而推出了EIDE(Enhanced IDE)的规格名称,而这个规格同时又被称为Fast ATA。所不同的是Fast ATA是专指硬盘接口,而EIDE还制定了连接光盘等非硬盘产品的标准。而这个连接非硬盘类的IDE标准,又称为ATAPI接口。而之后再推出更快的接口,名称都只剩下ATA的字样,像是Ultra ATA、ATA/66、ATA/100等。
主板IDE接口
早期的IDE接口有两种传输模式,一个是PIO(Programming I/O)模式,另一个是DMA(Direct Memory Access)。虽然DMA模式系统资源占用少,但需要额外的驱动程序或设置,因此被接受的程度比较低。后来在对速度要求愈来愈高的情况下,DMA模式由于执行效率较好,操作系统开始直接支持,而且厂商更推出了愈来愈快的DMA模式传输速度标准。而从英特尔的430TX芯片组开始,就提供了对Ultra DMA 33的支持,提供了最大33MB/sec的的数据传输率,以后又很快发展到了ATA 66,ATA 100以及迈拓提出的ATA 133标准,分别提供66MB/sec,100MB/sec以及133MB/sec的最大数据传输率。值得注意的是,迈拓提出的ATA 133标准并没能获得业界的广泛支持,硬盘厂商中只有迈拓自己才采用ATA 133标准,而日立(IBM),希捷和西部数据则都采用ATA 100标准,芯片组厂商中也只有VIA,SIS,ALi以及nViidia对次标准提供支持,芯片组厂商中英特尔则只支持ATA 100标准。
各种IDE标准都能很好的向下兼容,例如ATA 133兼容ATA 66/100和Ultra DMA33,而ATA 100也兼容Ultra DMA 33/66。
要特别注意的是,对ATA 66以及以上的IDE接口传输标准而言,必须使用专门的80芯IDE排线,其与普通的40芯IDE排线相比,增加了40条地线以提高信号的稳定性。
以上这些都是传统的并行ATA传输方式,现在又出现了串行ATA(Serial ATA,简称SATA),其最大数据传输率更进一步提高到了150MB/sec,将来还会提高到300MB/sec,而且其接口非常小巧,排线也很细,有利于机箱内部空气流动从而加强散热效果,也使机箱内部显得不太凌乱。与并行ATA相比,STAT还有一大优点就是支持热插拔。
主板SATA接口
在选购主板时,其实并无必要太在意IDE接口传输标准有多快,其实在ATA 100,ATA 133以及SATA 150下硬盘性能都差不多,因为受限于硬盘的机械结构和数据存取方式,硬盘的性能瓶颈是硬盘的内部数据传输率而非外部接口标准,目前主流硬盘的内部数据传输率离ATA 100的100MB/sec都还差得很远。所以要按照自己的具体需求选购。
IDE接口详细解释,请参看本站硬盘部分术语解释。
八:主板 : 支持CPU类型
是指能在该主板上所采用的CPU类型。CPU的发展速度相当快,不同时期CPU的类型是不同的,而主板支持此类型就代表着属于此类的CPU大多能在该主板上运行(在主板所能支持的CPU频率限制范围内)。CPU类型从早期的386、486、Pentium、K5、K6、K6-2、Pentium II、Pentium III等,到今天的Pentium 4、Duron、AthlonXP、至强(XEON)、Athlon 64经历了很多代的改进。每种类型的CPU在针脚、主频、工作电压、接口类型、封装等方面都有差异,尤其在速度性能上差异很大。只有购买与主板支持CPU类型相同的CPU,二者才能配套工作。
九:主板 : 显示芯片
显示芯片是指主板所板载的显示芯片,有显示芯片的主板不需要独立显卡就能实现普通的显示功能,以满足一般的家庭娱乐和商业应用,节省用户购买显卡的开支。板载显示芯片可以分为两种类型:整合到北桥芯片内部的显示芯片以及板载的独立显示芯片,市场中大多数板载显示芯片的主板都是前者,如常见的865G/845GE主板等;而后者则比较少见,例如精英的“游戏悍将”系列主板,板载SIS的Xabre 200独立显示芯片,并有64MB的独立显存。
主板板载显示芯片的历史已经非常悠久了,从较早期VIA的MVP4芯片组到后来英特尔的810系列,815系列,845GL/845G/845GV/845GE,865G/865GV以及910GL/915G/915GL/915GV等芯片组都整合了显示芯片。而英特尔也正是依靠了整合的显示芯片,才占据了图形芯片市场的较大份额。
目前各大主板芯片组厂商都有整合显示芯片的主板产品,而所有的主板厂商也都有对应的整合型主板。英特尔平台方面整合芯片组的厂商有英特尔,VIA,SIS,ATI等,AMD平台方面整合芯片组的厂商有VIA,SIS,NVIDIA等等。从性能上来说,英特尔平台方面显示芯片性能最高的是945G芯片组,而AMD平台方面显示芯片性能最高的是NVIDIA的C61P芯片组。
十:主板 : USB
扩展接口是主板上用于连接各种外部设备的接口。通过这些扩展接口,可以把打印机,外置Modem,扫描仪,闪存盘,MP3播放机,DC,DV,移动硬盘,手机,写字板等外部设备连接到电脑上。而且,通过扩展接口还能实现电脑间的互连。
目前,常见的扩展接口有串行接口(Serial Port),并行接口(Parallel Port),通用串行总线接口(USB),IEEE 1394接口等。
USB
USB是英文Universal Serial Bus的缩写,中文含义是“通用串行总线”。它不是一种新的总线标准,而是应用在PC领域的接口技术。USB是在1994年底由英特尔、康柏、IBM、Microsoft等多家公司联合提出的。不过直到近期,它才得到广泛地应用。从1994年11月11日发表了USB V0.7版本以后,USB版本经历了多年的发展,到现在已经发展为2.0版本,成为目前电脑中的标准扩展接口。目前主板中主要是采用USB1.1和USB2.0,各USB版本间能很好的兼容。USB用一个4针插头作为标准插头,采用菊花链形式可以把所有的外设连接起来,最多可以连接127个外部设备,并且不会损失带宽。USB需要主机硬件、操作系统和外设三个方面的支持才能工作。目前的主板一般都采用支持USB功能的控制芯片组,主板上也安装有USB接口插座,而且除了背板的插座之外,主板上还预留有USB插针,可以通过连线接到机箱前面作为前置USB接口以方便使用(注意,在接线时要仔细阅读主板说明书并按图连接,千万不可接错而使设备损坏)。而且USB接口还可以通过专门的USB连机线实现双机互连,并可以通过Hub扩展出更多的接口。USB具有传输速度快(USB1.1是12Mbps,USB2.0是480Mbps),使用方便,支持热插拔,连接灵活,独立供电等优点,可以连接鼠标、键盘、打印机、扫描仪、摄像头、闪存盘、MP3机、手机、数码相机、移动硬盘、外置光软驱、USB网卡、ADSL Modem、Cable Modem等,几乎所有的外部设备。
十一:主板 : CPU插槽类型
我们知道,CPU需要通过某个接口与主板连接的才能进行工作。CPU经过这么多年的发展,采用的接口方式有引脚式、卡式、触点式、针脚式等。而目前CPU的接口都是针脚式接口,对应到主板上就有相应的插槽类型。不同类型的CPU具有不同的CPU插槽,因此选择CPU,就必须选择带有与之对应插槽类型的主板。主板CPU插槽类型不同,在插孔数、体积、形状都有变化,所以不能互相接插。
AMD的Socket AM2插槽采用全新设计处理器插槽,其拥有940根针脚,这种处理器内建DDR2内存控制器,可以支持最高DDR2 800的内存。而AMD计划从AM2插槽开始统一处理器的插槽,未来所有的AMD桌面处理器,包括Athlon 64, Athlon 64 X2以及Sempron处理器都会采用这种接口。需要注意的是,目前AMD把AM2架构还是在称为Rev F,到正式发布的时候就可称为AM2,并且AMD宣称这种处理器将官方支持DDR2-533, 667以及800内存,而对手英特尔目前最高内存支持的幅度仅为DDR 667;当然等到第三季度,英特尔推出Conroe核心处理器的时候,英特尔才会逐步引入DDR2 800的支持。
Socket 939插槽,是Athlon64处理器所采用的接口类型,针脚数为939针。支持 Socket 939 处理器的主板只需要4层 PCB。使用普通DDR内存。
Socket 940插槽,是Athlon64处理器所采用的接口类型,针脚数为940针。Socket 940接口的处理器支持双通道ECC内存,支持 Socket 940 处理器的主板必须采用6至9层PCB,必须采用带ECC校验的DDR内存。
Socket 754插槽,是Athlon64处理器所采用的接口类型,针脚数为754针。Socket 754 接口处理器支持单通道内存
LGA 775插槽,是Intel 925X Express和Intel 915 Express芯片组,所采用的接口类型,支持Pentium 4和Pentium 4 Extreme Edition处理器,针脚数为775针。
Socket 478插槽是目前Pentium 4系列处理器所采用的接口类型,针脚数为478针。Socket 478的Pentium 4处理器面积很小,其针脚排列极为紧密。采用Socket 478插槽的主板产品数量众多,是目前应用最为广泛的插槽类型。
Socket A接口,也叫Socket 462,是目前AMD公司Athlon XP和Duron处理器的插座标准。Socket A接口具有462插空,可以支持133MHz外频。如同Socket 370一样,降低了制造成本,简化了结构设计。
Socket 423插槽是最初Pentium 4处理器的标准接口,Socket 423的外形和前几种Socket类的插槽类似,对应的CPU针脚数为423。Socket 423插槽多是基于Intel 850芯片组主板,支持1.3GHz~1.8GHz的Pentium 4处理器。不过随着DDR内存的流行,英特尔又开发了支持SDRAM及DDR内存的i845芯片组,CPU插槽也改成了Socket 478,Socket 423插槽也就销声匿迹了。
Socket 370架构是英特尔开发出来代替SLOT架构,外观上与Socket 7非常像,也采用零插拔力插槽,对应的CPU是370针脚。
Socket 370主板多为采用Intel ZX、BX、i810芯片组的产品,其他厂商有VIA Apollo Pro系列、SIS 530系列等。最初认为,Socket 370的CPU升级能力可能不会太好,所以Socket 370的销量总是不如SLOT 1接口的主板。但在英特尔推出的“铜矿”和”图拉丁”系列CPU, Socket 370接口的主板一改低端形象,逐渐取代了SLOT 1接口。目前市场中还有极少部分的主板采用此种插槽。
SLOT 1是英特尔公司为取代Socket 7而开发的CPU接口,并申请的专利。这样其它厂商就无法生产SLOT 1接口的产品,也就使得AMD、VIA、SIS等公司不得不联合起来,对Socket 7接口升级,也得到了Super 7接口。后来随着Super 7接口的兴起,英特尔又将SLOT 1结构主板的制造授权提供给了VIA、SIS、ALI等主板厂商,所以这些厂商也相应推出了采用SLOT 1接口的系列主板,丰富了主板市场。
SLOT 1是英特尔公司为Pentium Ⅱ系列CPU设计的插槽,其将Pentium Ⅱ CPU及其相关控制电路、二级缓存都做在一块子卡上,多数Slot 1主板使用100MHz外频。SLOT 1的技术结构比较先进,能提供更大的内部传输带宽和CPU性能。采用SLOT 1接口的主板芯片组有Intel的BX、i810、i820系列及VIA的Apollo系列,ALI 的Aladdin Pro Ⅱ系列及SIS的620、630系列等。此种接口已经被淘汰,市面上已无此类接口的主板产品。
SLOT 2用途比较专业,都采用于高端服务器及图形工作站的系统。所用的CPU也是很昂贵的Xeon(至强)系列。Slot 2与Slot 1相比,有许多不同。首先,Slot 2插槽更长,CPU本身也都要大一些。其次,Slot 2能够胜任更高要求的多用途计算处理,这是进入高端企业计算市场的关键所在。在当时标准服务器设计中,一般厂商只能同时在系统中采用两个 Pentium Ⅱ处理器,而有了Slot 2设计后,可以在一台服务器中同时采用 8个处理器。而且采用Slot 2接口的Pentium Ⅱ CPU都采用了当时最先进的0.25微米制造工艺。支持SLOT 2接口的主板芯片组有440GX和450NX。
SLOT A接口类似于英特尔公司的SLOT 1接口,供AMD公司的K7 Athlon使用的。在技术和性能上,SLOT A主板可完全兼容原有的各种外设扩展卡设备。它使用的并不是Intel的P6 GTL+ 总线协议,而是Digital公司的Alpha总线协议EV6。EV6架构是种较先进的架构,它采用多线程处理的点到点拓扑结构,支持200MHz的总线频率。支持SLOT A接口结构的主板芯片组主要有两种,一种是AMD的AMD 750芯片组,另一种是VIA的Apollo KX133芯片组。此类接口已被Socket A接口全面取代。
Socket 7:Socket在英文里就是插槽的意思,Socket 7也被叫做Super 7。最初是英特尔公司为Pentium MMX系列CPU设计的插槽,后来英特尔放弃Socket 7接口转向SLOT 1接口,AMD、VIA、ALI、SIS等厂商仍然沿用此接口,直至发展出Socket A接口。该插槽基本特征为321插孔,系统使用66MHz的总线。Super 7主板增加了对100MHz外频和AGP接口类型的支持。
Super 7采用的芯片组有VIA公司的MVP3、MVP4系列,SIS公司的530/540系列及ALI的Aladdin V系列等主板产品。对应Super 7接口CPU的产品有AMD K6-2、K6-Ⅲ 、Cyrix M2及一些其他厂商的产品。此类接口目前已被淘汰,只有部分老产品才能见到。
十二:主板 : 扩展插槽
扩展插槽是主板上用于固定扩展卡并将其连接到系统总线上的插槽,也叫扩展槽、扩充插槽。扩展槽是一种添加或增强电脑特性及功能的方法。例如,不满意主板整合显卡的性能,可以添加独立显卡以增强显示性能;不满意板载声卡的音质,可以添加独立声卡以增强音效;不支持USB2.0或IEEE1394的主板可以通过添加相应的USB2.0扩展卡或IEEE1394扩展卡以获得该功能等。
目前扩展插槽的种类主要有ISA,PCI,AGP,CNR,AMR,ACR和比较少见的WI-FI,VXB,以及笔记本电脑专用的PCMCIA等。历史上出现过,早已经被淘汰掉的还有MCA插槽,EISA插槽以及VESA插槽等等。未来的主流扩展插槽是PCI Express插槽。
在选购主板产品时,扩展插槽的种类和数量的多少是决定购买的一个重要指标。有多种类型和足够数量的扩展插槽就意味着今后有足够的可升级性和设备扩展性,反之则会在今后的升级和设备扩展方面碰到巨大的障碍。这点对初学者尤其重要。例如不满意整合主板的游戏性能想升级为独立显卡却发现主板上没有AGP插槽;想添加一块视频采集卡却发现使用的PCI插槽都已插满等等。但扩展插槽也并非越多越好,过多的插槽会导致主板成本上升从而加大用户的购买成本,而且过多的插槽对许多用户而言并没有作用,例如一台只需要做文本处理和上网的办公电脑却配有6个PCI插槽而且配有独立显卡,就是一种典型的资源浪费,这种类型的电脑只用整合型的Micro ATX主板就能完全满足使用要求。所以在具体产品的选购上要根据自己的需要来选购,符合自己的才是最好的。
十三:主板 : 内存插槽
内存插槽是指主板上所采用的内存插槽类型和数量。主板所支持的内存种类和容量都由内存插槽来决定的。目前主要应用于主板上的内存插槽有:
SIMM(Single Inline Memory Module,单内联内存模块)
168针SIMM插槽
内存条通过金手指与主板连接,内存条正反两面都带有金手指。金手指可以在两面提供不同的信号,也可以提供相同的信号。SIMM就是一种两侧金手指都提供相同信号的内存结构,它多用于早期的FPM和EDD DRAM,最初一次只能传输8bif数据,后来逐渐发展出16bit、32bit的SIMM模组,其中8bit和16bitSIMM使用30pin接口,32bit的则使用72pin接口。在内存发展进入SDRAM时代后,SIMM逐渐被DIMM技术取代。
DIMM
184针DIMM插槽
DIMM与SIMM相当类似,不同的只是DIMM的金手指两端不像SIMM那样是互通的,它们各自独立传输信号,因此可以满足更多数据信号的传送需要。同样采用DIMM,SDRAM 的接口与DDR内存的接口也略有不同,SDRAM DIMM为168Pin DIMM结构,金手指每面为84Pin,金手指上有两个卡口,用来避免插入插槽时,错误将内存反向插入而导致烧毁;DDR DIMM则采用184Pin DIMM结构,金手指每面有92Pin,金手指上只有一个卡口。卡口数量的不同,是二者最为明显的区别。DDR2 DIMM为240pin DIMM结构,金手指每面有120Pin,与DDR DIMM一样金手指上也只有一个卡口,但是卡口的位置与DDR DIMM稍微有一些不同,因此DDR内存是插不进DDR2 DIMM的,同理DDR2内存也是插不进DDR DIMM的,因此在一些同时具有DDR DIMM和DDR2 DIMM的主板上,不会出现将内存插错插槽的问题。
240针DDR2 DIMM插槽
RIMM
RIMM是Rambus公司生产的RDRAM内存所采用的接口类型,RIMM内存与DIMM的外型尺寸差不多,金手指同样也是双面的。RIMM有也184 Pin的针脚,在金手指的中间部分有两个靠的很近的卡口。RIMM非ECC版有16位数据宽度,ECC版则都是18位宽。由于RDRAM内存较高的价格,此类内存在DIY市场很少见到,RIMM接口也就难得一见了。
十四:主板 : 网卡芯片
主板网卡芯片是指整合了网络功能的主板所集成的网卡芯片,与之相对应,在主板的背板上也有相应的网卡接口(RJ-45),该接口一般位于音频接口或USB接口附近。
板载RTL8100B网卡芯片
以前由于宽带上网很少,大多都是拨号上网,网卡并非电脑的必备配件,板载网卡芯片的主板很少,如果要使用网卡就只能采取扩展卡的方式;而现在随着宽带上网的流行,网卡逐渐成为电脑的基本配件之一,板载网卡芯片的主板也越来越多了。
在使用相同网卡芯片的情况下,板载网卡与独立网卡在性能上没有什么差异,而且相对与独立网卡,板载网卡也具有独特的优势。首先是降低了用户的采购成本,例如现在板载千兆网卡的主板越来越多,而购买一块独立的千兆网卡却需要好几百元;其次,可以节约系统扩展资源,不占用独立网卡需要占用的PCI插槽或USB接口等;再次,能够实现良好的兼容性和稳定性,不容易出现独立网卡与主板兼容不好或与其它设备资源冲突的问题。
板载网卡芯片以速度来分可分为10/100Mbps自适应网卡和千兆网卡,以网络连接方式来分可分为普通网卡和无线网卡,以芯片类型来分可分为芯片组内置的网卡芯片(某些芯片组的南桥芯片,如SIS963)和主板所附加的独立网卡芯片(如Realtek 8139系列)。部分高档家用主板、服务器主板还提供了双板载网卡。
板载网卡芯片主要生产商是英特尔,3Com,Realtek,VIA和SIS等等。
十五:主板 : 并/串
串行接口
串行接口,简称串口,也就是COM接口,是采用串行通信协议的扩展接口。串口的出现是在1980年前后,数据传输率是115kbps~230kbps,串口一般用来连接鼠标和外置Modem以及老式摄像头和写字板等设备,目前部分新主板已开始取消该接口。
并行接口
并行接口,简称并口,也就是LPT接口,是采用并行通信协议的扩展接口。并口的数据传输率比串口快8倍,标准并口的数据传输率为1Mbps,一般用来连接打印机、扫描仪等。所以并口又被称为打印口。
另外,串口和并口都能通过直接电缆连接的方式实现双机互连,在此方式下数据只能低速传输。多年来PC的串口与并口的功能和结构并没有什么变化。在使用串并口时,原则上每一个外设必须插在一个接口上,如果所有的接口均被用上了就只能通过添加插卡来追加接口。串、并口不仅速度有限,而且在使用上很不方便,例如不支持热插拔等。随着USB接口的普及,目前都已经很少使用了,而且随着BTX规范的推广,是必然会被淘汰的。
十六:主板 : 前端总线频率
总线是将计算机微处理器与内存芯片以及与之通信的设备连接起来的硬件通道。前端总线将CPU连接到主内存和通向磁盘驱动器、调制解调器以及网卡这类系统部件的外设总线。人们常常以MHz表示的速度来描述总线频率。
前端总线(FSB)频率是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz,1066MHz,1333MHz几种,前端总线频率越大,代表着CPU与内存之间的数据传输量越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU。较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。
外频与前端总线频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。
主板支持的前端总线是由芯片组决定的,一般都带有足够的向下兼容性。如865PE主板支持800MHz前端总线,那安装的CPU的前端总线可以是800MHz,也可以是533MHz,但这样就无法发挥出主板的全部功效。
十七:主板 : 支持内存类型
支持内存类型是指主板所支持的具体内存类型。不同的主板所支持的内存类型是不相同的。内存类型主要有FPM,EDO,SDRAM,RDRAM已经DDR DRAM等。
FPM是Fast Page Mode(快页模式)的简称,是较早的PC机普遍使用的内存,它每隔3个时钟脉冲周期传送一次数据。现在早就被淘汰掉了。
EDO是Extended Data Out(扩展数据输出)的简称,它取消了主板与内存两个存储周期之间的时间间隔,每隔2个时钟脉冲周期传输一次数据,大大地缩短了存取时间,使存取速度提高30%,达到60ns。EDO内存主要用于72线的SIMM内存条,以及采用EDO内存芯片的PCI显示卡。这种内存流行在486以及早期的奔腾计算机系统中,它有72线和168线之分,采用5V工作电压,带宽32 bit,必须两条或四条成对使用,可用于英特尔430FX/430VX甚至430TX芯片组主板上。目前也已经被淘汰,只能在某些老爷机上见到。
SDRAM是Synchronous Dynamic Random Access Memory(同步动态随机存储器)的简称,是前几年普遍使用的内存形式。SDRAM采用3.3v工作电压,带宽64位,SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使RAM和CPU能够共享一个时钟周期,以相同的速度同步工作,与 EDO内存相比速度能提高50%。SDRAM基于双存储体结构,内含两个交错的存储阵列,当CPU从一个存储体或阵列访问数据时,另一个就已为读写数据做好了准备,通过这两个存储阵列的紧密切换,读取效率就能得到成倍的提高。SDRAM不仅可用作主存,在显示卡上的显存方面也有广泛应用。SDRAM曾经是长时间使用的主流内存,从430TX芯片组到845芯片组都支持SDRAM。但随着DDR SDRAM的普及,SDRAM也正在慢慢退出主流市场。
RDRAM是Rambus Dynamic Random Access Memory(存储器总线式动态随机存储器)的简称,是Rambus公司开发的具有系统带宽、芯片到芯片接口设计的内存,它能在很高的频率范围下通过一个简单的总线传输数据,同时使用低电压信号,在高速同步时钟脉冲的两边沿传输数据。最开始支持RDRAM的是英特尔820芯片组,后来又有840,850芯片组等等。RDRAM最初得到了英特尔的大力支持,但由于其高昂的价格以及Rambus公司的专利许可限制,一直未能成为市场主流,其地位被相对廉价而性能同样出色的DDR SDRAM迅速取代,市场份额很小。
DDR SDRAM是Double Data Rage Dynamic Random Access Memory(双数据率同步动态随机存储器)的简称,是由VIA等公司为了与RDRAM相抗衡而提出的内存标准。DDR SDRAM是SDRAM的更新换代产品,采用2.5v工作电压,它允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度,并具有比SDRAM多一倍的传输速率和内存带宽,例如DDR 266与PC 133 SDRAM相比,工作频率同样是133MHz,但内存带宽达到了2.12 GB/s,比PC 133 SDRAM高一倍。目前主流的芯片组都支持DDR SDRAM,是目前最常用的内存类型。
ECC并不是内存类型,ECC(Error Correction Coding或Error Checking and Correcting)是一种具有自动纠错功能的内存,英特尔的82430HX芯片组就开始支持它,使用该芯片组的主板都可以安装使用ECC内存,但由于ECC内存成本比较高,所以主要应用在要求系统运算可靠性比较高的商业电脑中,例如服务器/工作站等等。由于实际上存储器出错的情况不会经常发生,而且普通的主板也并不支持ECC内存,所以一般的家用与办公电脑也不必采用ECC内存。
一般情况下,一块主板只支持一种内存类型,但也有例外。有些主板具有两种内存插槽,可以使用两种内存,例如以前有些主板能使用EDO和SDRAM,现在有些主板能使用SDRAM和DDR SDRAM。
上图中的主板就支持两种内存类型(SDRAM和DDR SDRAM),采用两种类型的内存插槽(蓝色和黑色)区分。值得注意的是,在这些主板上不能同时使用两种内存,而只能使用其中的一种,这是因为其电气规范和工作电压是不同的,混用会引起内存损坏和主板损坏的问题。
十八:主板 : 南桥芯片
南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。
南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1的440LX其南桥芯片都采用82317AB,而近两年的芯片组845E/845G/845GE/845PE等配置都采用ICH4南桥芯片,但也能搭配ICH2南桥芯片。更有甚者,有些主板厂家生产的少数产品采用的南北桥是不同芯片组公司的产品,例如以前升技的KG7-RAID主板,北桥采用了AMD 760,南桥则是VIA 686B。
南桥芯片的发展方向主要是集成更多的功能,例如网卡、RAID、IEEE 1394、甚至WI-FI无线网络等等。
上图中,中间靠下的那个较大的芯片,就是主板的南桥芯片,放大后效果如下图:
十九:主板 : 超线程技术
CPU生产商为了提高CPU的性能,通常做法是提高CPU的时钟频率和增加缓存容量。不过目前CPU的频率越来越快,如果再通过提升CPU频率和增加缓存的方法来提高性能,往往会受到制造工艺上的限制以及成本过高的制约。
尽管提高CPU的时钟频率和增加缓存容量后的确可以改善性能,但这样的CPU性能提高在技术上存在较大的难度。实际上在应用中基于很多原因,CPU的执行单元都没有被充分使用。如果CPU不能正常读取数据(总线/内存的瓶颈),其执行单元利用率会明显下降。另外就是目前大多数执行线程缺乏ILP(Instruction-Level Parallelism,多种指令同时执行)支持。这些都造成了目前CPU的性能没有得到全部的发挥。因此,Intel则采用另一个思路去提高CPU的性能,让CPU可以同时执行多重线程,就能够让CPU发挥更大效率,即所谓“超线程(Hyper-Threading,简称“HT”)”技术。超线程技术就是利用特殊的硬件指令,把两个逻辑内核模拟成两个物理芯片,让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。
采用超线程及时可在同一时间里,应用程序可以使用芯片的不同部分。虽然单线程芯片每秒钟能够处理成千上万条指令,但是在任一时刻只能够对一条指令进行操作。而超线程技术可以使芯片同时进行多线程处理,使芯片性能得到提升。
超线程技术是在一颗CPU同时执行多个程序而共同分享一颗CPU内的资源,理论上要像两颗CPU一样在同一时间执行两个线程,P4处理器需要多加入一个Logical CPU Pointer(逻辑处理单元)。因此新一代的P4 HT的die的面积比以往的P4增大了5%。而其余部分如ALU(整数运算单元)、FPU(浮点运算单元)、L2 Cache(二级缓存)则保持不变,这些部分是被分享的。
虽然采用超线程技术能同时执行两个线程,但它并不象两个真正的CPU那样,每个CPU都具有独立的资源。当两个线程都同时需要某一个资源时,其中一个要暂时停止,并让出资源,直到这些资源闲置后才能继续。因此超线程的性能并不等于两颗CPU的性能。
英特尔P4 超线程有两个运行模式,Single Task Mode(单任务模式)及Multi Task Mode(多任务模式),当程序不支持Multi-Processing(多处理器作业)时,系统会停止其中一个逻辑CPU的运行,把资源集中于单个逻辑CPU中,让单线程程序不会因其中一个逻辑CPU闲置而减低性能,但由于被停止运行的逻辑CPU还是会等待工作,占用一定的资源,因此Hyper-Threading CPU运行Single Task Mode程序模式时,有可能达不到不带超线程功能的CPU性能,但性能差距不会太大。也就是说,当运行单线程运用软件时,超线程技术甚至会降低系统性能,尤其在多线程操作系统运行单线程软件时容易出现此问题。
需要注意的是,含有超线程技术的CPU需要芯片组、软件支持,才能比较理想的发挥该项技术的优势。目前支持超线程技术的芯片组包括如:英特尔i845GE、PE及矽统iSR658 RDRAM、SiS645DX、SiS651可直接支持超线程;英特尔i845E、i850E通过升级BIOS后可支持;威盛P4X400、P4X400A可支持,但未获得正式授权。操作系统如:Microsoft Windows XP、Microsoft Windows 2003,Linux kernel 2.4.x以后的版本也支持超线程技术。
二十:主板 : 电源回路
电源回路是主板中的一个重要组成部分,其作用是对主机电源输送过来的电流进行电压的转换,将电压变换至CPU所能接受的内核电压值,使CPU正常工作,以及对主机电源输送过来的电流进行整形和过滤,滤除各种杂波和干扰信号以保证电脑的稳定工作。电源回路的主要部分一般都位于主板CPU插槽附近。
电源回路依其工作原理可分为线性电源供电方式和开关电源供电方式。
线性电源供电方式
这是好多年以前的主板供电方式,它是通过改变晶体管的导通程度来实现的,晶体管相当于一个可变电阻,串接在供电回路中。由于可变电阻与负载流过相同的电流,因此要消耗掉大量的能量并导致升温,电压转换效率低。尤其是在需要大电流的供电电路中线性电源无法使用。目前这种供电方式早已经被淘汰掉了。
开关电源供电方式
这是目前广泛采用的供电方式,PWM控制器IC芯片提供脉宽调制,并发出脉冲信号,使得场效应管MOSFET1与MOSFET2轮流导通。扼流圈L0与L1是作为储能电感使用并与相接的电容组成LC滤波电路。
其工作原理是这样的:当负载两端的电压VCORE(如CPU需要的电压)要降低时,通过MOSFET场效应管的开关作用,外部电源对电感进行充电并达到所需的额定电压。当负载两端的电压升高时,通过MOSFET场效应管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了电源继续对负载供电。随着电感上存储能量的消耗,负载两端的电压开始逐渐降低,外部电源通过MOSFET场效应管的开关作用又要充电。依此类推在不断地充电和放电的过程中就行成了一种稳定的电压,永远使负载两端的电压不会升高也不会降低,这就是开关电源的最大优势。还有就是由于MOSFET场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。这也就是所谓的“单相电源回路”的工作原理。
单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个数字,P4处理器功率可以达到70-80瓦,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。(如图2)就是一个两相供电的示意图,很容易看懂,就是两个单相电路的并联,因此它可以提供双倍的电流供给,理论上可以绰绰有余地满足目前CPU的需要了。但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能,导体的电阻,都是影响Vcore的要素。实际应用中存在供电部分的效率问题,电能不会100%转换,一般情况下消耗的电能都转化为热量散发出来,所以我们常见的任何稳压电源总是电器中最热的部分。要注意的是,温度越高代表其效率越低。这样一来,如果电路的转换效率不是很高,那么采用两相供电的电路就可能无法满足CPU的需要,所以又出现了三相甚至更多相供电电路。但是,这也带来了主板布线复杂化,如果此时布线设计如果不很合理,就会影响高频工作的稳定性等一系列问题。目前在市面上见到的主流主板产品有很多采用三相供电电路,虽然可以供给CPU足够动力,但由于电路设计的不足使主板在极端情况下的稳定性一定程度上受到了限制,如要解决这个问题必然会在电路设计布线方面下更大的力气,而成本也随之上升了。
电源回路采用多相供电的原因是为了提供更平稳的电流,从控制芯片PWM发出来的是那种脉冲方波信号,经过LC震荡回路整形为类似直流的电流,方波的高电位时间很短,相越多,整形出来的准直流电越接近直流。
电源回路对电脑的性能发挥以及工作的稳定性起着非常重要的作用,是主板的一个重要的性能参数。在选购时应该选择主流大厂设计精良,用料充足的产品。
二十一:主板 : CPU自动检测
以前的老式主板需要用户自己设定CPU的外频,倍频以及电压等参数(一般都是通过跳线来设定),现在生产的主板都能自动检测到这些参数,进而正确设定这些参数,并保存在CMOS中。在CMOS掉电时,也不需要打开机箱重新进行设置。
另外,现在的主板还具有老式主板所没有的CPU温度检测报警功能。CPU温度过高会导致系统工作不稳定或者死机,甚至损坏CPU等,所以对CPU的温度检测是很重要的。它会在CPU温度超出安全范围时发出警告检测。温度的探头有两种:一种集成在处理器之中,依靠BIOS的支持;另一种是外置的,在主板上面可以见到,通常是一颗热敏电阻。它们都是通过温度的改变来改变自身的电阻值,让温度检测电路探测到电阻的改变,从而改变温度数值。
二十二:主板 : 适用平台
适用平台分Intel平台和AMD平台,下面我们就来看看Intel平台和AMD平台的区别:
Intel:
845系列芯片组的82845E/82845GL/82845G/82845GV/82845GE/82845PE,除82845GL以外都支持533MHz FSB(82845GL只支持400MHz FSB),支持内存方面,所有845系列北桥都支持最大2GB内存。82845GL/82845E支持DDR 266,其余都支持DDR 333。除82845GL/82845GV之外都支持AGP 4X规范。865系列芯片组的82865P/82865G/82865PE/82865GV/82848P,除82865P之外都支持800MHz FSB,DDR 400(82865P只支持533MHz FSB,DDR 333,除82848P之外都支持双通道内存以及最大4GB内存容量(82848P只支持单通道最大2GB内存),除82865GV之外都支持AGP 8X规范;还有目前最高端的875系列的82875P北桥,支持800MHz FSB,4GB双通道DDR 400以及PAT功能。英特尔的芯片组或北桥芯片名称中带有“G”字样的还整合了图形核心。
比较新的有915/925系列的82910GL、82915P、82915G、82915GV、82925X和82925XE六款北桥芯片。在支持的前端总线频率方面,82910GL只支持533MHz FSB,而82925XE则支持1066MHz FSB,其余的82915P、82915G、82915GV和82925X都支持800MHz FSB;在内存支持方面,82910GL只支持DDR内存(DDR 400),82925X和82925XE则只支持DDR2内存(DDR2 533),其余的82915P、82915G和82915GV都能支持DDR内存(DDR 400)和DDR2内存(DDR2 533),所有这六款北桥芯片都能支持双通道内存技术,最大支持4GB内存容量;82910GL、82915G和82915GV集成了支持DirectX 9.0的Intel GMA900显示芯片(Intel Graphics Media Accelerator 900);在外接显卡接口方面,82915P、82915G、82925X和82925XE都提供一条PCI Express X16显卡插槽,而82910GL和82915GV则不支持独立的显卡插槽。82925X由于自身尴尬定位的原因,性能比915系列强不了多少,而却比82925XE差得多,面临着停产或限产的命运。
SIS:
主要有支持DDR SDRAM内存的SIS648FX、SIS655FX、SIS655TX、SIS656、SIS649以及集成了SiS Mirage显示芯片的SIS 661FX。其中,SIS655FX、SIS655TX和SIS656支持双通道内存技术;SIS648FX、SIS655FX、SIS655TX和SIS 661FX支持AGP 8X规范,而SIS656和SIS649则支持PCI Express X16规范;所有这六款北桥芯片都支持DDR 400内存,而SIS 649则能支持DDR2 533内存,SIS 656更能支持DDR2 667内存。
ATI:
主要就是Radeon 9100系列北桥芯片。Radeon 9100 IGP、Radeon 9100 Pro IGP和RX330这三款北桥芯片都能支持800MHz FSB、双通道DDR 400内存和AGP 8X规范,Radeon 9100 IGP和Radeon 9100 Pro IGP还集成了支持DirectX 8.1的Radeon 9200显示芯片。
VIA:
主要有比较新的PT800/PT880/PM800/PM880以及较早期的P4X400/P4X333/P4X266/P4X266A/P4X266E/P4M266等等,其中,VIA芯片组名称或北桥名称中带有“M”字样的还整合了图形核心(英特尔平台和AMD平台都如此)。PT800、PT880、PM800和PM880这四款北桥芯片都能支持800MHz FSB和DDR 400内存,并且都支持AGP 8X规范。其中PT880和PM880支持双通道内存技术,PM800和PM880还集成了S3 UniChrome Pro显示芯片。
ULI:
离开芯片组市场多年,目前产品不多,主要是M1683和M1685,这两款北桥芯片都能支持800MHz FSB,其中,M1683支持AGP 8X规范和DDR 500内存,而M1685则支持PCI Express X16规范和DDR2 667内存。
AMD
VIA:
除了支持K7系列CPU(Athlon/Duron/Athlon XP)的KT880/KT600/KT400A以及较早期的KT400/KM400/KT333/KT266A/KT266/KT133/KT133A外,还有有K8M800、K8T800、K8T800 Pro、K8T890和K8T890 Pro。其中,支持K7系列的KT600和KT880支持400MHz FSB、DDR 400内存和AGP 8X规范,KT880还支持双通道内存技术。支持K8系列的K8M800和K8T800支持800MHz HyperTransport频率,K8T800 Pro、K8T890和K8T890 Pro支持1000MHz HyperTransport频率,K8M800、K8T800和K8T800 Pro支持AGP 8X规范,而K8T890和K8T890 Pro则支持PCI Express X16规范,并且与nVidia的nForce4 SLI相同,K8T890 Pro同样也能支持两块nVidia的Geforce 6系列显卡之间的SLI连接以提升系统的图形性能;K8M800还集成了S3 UniChrome Pro显示芯片。。
SIS:
主要有支持K7系列CPU的SIS748/SIS746/SIS746FX/SIS745/SIS741/SIS741GX/SIS740/SIS735,以及支持k8系列CPU的SIS755、SIS755FX、SIS760和SIS756。其中,SIS755和SIS760支持800MHz HyperTransport频率,SIS755FX和SIS756则支持1000MHz HyperTransport频率;SIS755、SIS755FX和SIS760支持AGP 8X规范,而SIS756则支持PCI Express X16规范;SIS760还集成了支持DirectX 8.1的SIS Mirage 2显示芯片。。
NVIDIA:
除了早期的支持K7系列CPU的nForce2 IGP/SPP,nForce2 Ultra 400,nForce2 400等,比较新的是支持K8系列CPU的nForce3系列的nForce3 250、nForce3 250Gb、nForce3 Ultra、nForce3 Pro以及nForce4系列的nForce4、nForce4 Ultra和nForce4 SLI,这些全都是单芯片芯片组,其中nForce3系列支持AGP 8X规范,而nForce4系列则支持PCI Express X16规范,nForce4 SLI更能支持两块nVidia的Geforce 6系列显卡(支持SLI技术的GeForce 6800Ultra 、GeForce 6800GT、GeForce 6600GT)之间的SLI连接,极大地提升系统的图形性能。
ULI:
离开芯片组市场多年,目前产品不多,主要就是单芯片的支持K8系列CPU的M1689,比较特别的是,M1689能支持所有的K8系列CPU,包括桌面平台(Athlon 64和Athlon 64 FX)、移动平台(Mobile Athlon 64)和服务器/工作站平台(Opteron)。支持800MHz HyperTransport频率和AGP 8X规范。
ATI:
ATI刚进入AMD平台芯片组市场,目前只有支持K8系列CPU的Radeon Xpress 200(北桥芯片是RS480)和Radeon Xpress 200P(北桥芯片是RX480),这二者都支持PCI Express X16规范,其中,Radeon Xpress 200还集成了支持DirectX 9.0的Radeon X300显示芯片。Radeon Xpress 200有两项技术比较有特色,一是“HyperMemory”技术,简单的说就是在主板的北桥芯片旁边板载整合图形核芯专用的本地显存,ATI也为HyperMemory技术做了很灵活的设计,可以单独使用板载显存,也可以和系统共用内存,更可以同时使用板载显存和系统内存;二是“SurroundView”功能,即再添加一块独立显卡配合整合的图形核心,可以实现三屏显示输出功能。
二十三:主板 : 其他内部插口
AMR
AMR(Audio Modem Riser,声音和调制解调器插卡)规范,它是1998年英特尔公司发起并号召其它相关厂商共同制定的一套开放工业标准,旨在将数字信号与模拟信号的转换电路单独做在一块电路卡上。因为在此之前,当主板上的模拟信号和数字信号同处在一起时,会产生互相干扰的现象。而AMR规范就是将声卡和调制解调器功能集成在主板上,同时又把数字信号和模拟信号隔离开来,避免相互干扰。这样做既降低了成本,又解决了声卡与Modem子系统在功能上的一些限制。由于控制电路和数字电路能比较容易集成在芯片组中或主板上,而接口电路和模拟电路由于某些原因(如电磁干扰、电气接口不同)难以集成到主板上。因此,英特尔公司就专门开发出了AMR插槽,目的是将模拟电路和I/O接口电路转移到单独的AMR插卡中,其它部件则集成在主板上的芯片组中。AMR插槽的位置一般在主板上PCI插槽(白色)的附近,比较短(大约只有5厘米),外观呈棕色。可插接AMR声卡或AMR Modem卡,不过由于现在绝大多数整合型主板上都集成了AC'97音效芯片,所以AMR插槽主要是与AMR Modem配合使用。但由于AMR Modem卡比一般的内置软Modem卡更占CPU资源,使用效果并不理想,而且价格上也不比内置Modem卡占多大优势,故此AMR插槽很快被CNR所取代。
AMR插槽
CNR
为顺应宽带网络技术发展的需求,弥补AMR规范设计上的不足,英特尔适时推出了CNR(CommunicATIon Network Riser,通讯网络插卡)标准。与AMR规范相比,新的CNR标准应用范围更加广泛,它不仅可以连接专用的CNR Modem,还能使用专用的家庭电话网络(Home PNA),并符合PC 2000标准的即插即用功能。最重要的是,它增加了对10/100MB局域网功能的支持,以及提供对AC’97兼容的AC-Link、SMBus接口和USB(1.X或2.0)接口的支持。另外,CNR标准支持ATX、Micro ATX和Flex ATX规格的主板,但不支持NLX形式的主板(AMR支持)。从外观上看,CNR插槽比AMR插槽比较相似(也呈棕色),但前者要略长一点,而且两者的针脚数也不相同,所以AMR插槽与CNR插槽无法兼容。CNR支持的插卡类型有Audio CNR、Modem CNR、USB Hub CNR、Home PNA CNR、LAN CNR等。但市场对CNR的支持度不够,相应的产品很少,所以大多数主板上的CNR插槽也成了无用的摆设。
CNR插槽
ACR
ACR是Advanced CommuniATIon Riser(高级通讯插卡)的缩写,它是VIA(威盛)公司为了与英特尔的AMR相抗衡而联合AMD、3Com、Lucent(朗讯)、Motorola(摩托罗拉)、NVIDIA、Texas Instruments等世界著名厂商于2001年6月推出的一项开放性行业技术标准,其目的也上为了拓展AMR在网络通讯方面的功能。ACR不但能够与AMR规范完全兼容,而且定义了一个非常完善的网络与通讯的标准接口。ACR插卡可以提供诸如Modem、LAN(局域网)、Home PNA、宽带网(ADSL、Cable Modem)、无线网络和多声道音效处理等功能。ACR插槽大多都设计放在原来ISA插槽的地方。ACR插槽采用120针脚设计,兼容普通的PCI插槽,但方向正好与之相反,这样可以保证两种类型的插卡不会混淆。管ACR和CNR标准都包含了AMR标准的全部内容,但这两者并不兼容,甚至可以说是互相排斥(这也是市场竞争的恶果)。两者最明显的差别是,CNR放弃了原有的基础架构,即放弃了对AMR标准的兼容,而ACR标准在增加了众多新功能的同时保留了与AMR的兼容性。但与CNR一样,市场对ACR的支持度不够,相应的产品很少,所以大多数主板上的ACR插槽也成了无用的摆设。
上图中最左侧的插槽为ACR插槽,注意其与右侧5个PCI插槽的区别。
IEEE 1394
IEEE 1394的前身即Firewire(火线),是1986年由苹果电脑公司针对高速数据传输所开发的一种传输介面,并于1995年获得美国电机电子工程师协会认可,成为正式标准。现在大家看到的IEEE1394、Firewire和i.LINK其实指的都是这个标准,通常,在PC个人计算机领域将它称为IEEE1394,在电子消费品领域,则更多的将它称为i.LINK,而对于苹果机则仍以最早的Firewire称之。IEEE 1394也是一种高效的串行接口标准,功能强大而且性能稳定,而且支持热拔插和即插即用。IEEE 1394可以在一个端口上连接多达63个设备,设备间采用树形或菊花链拓扑结构。
IEEE 1394标准定义了两种总线模式,即:Backplane模式和Cable模式。其中Backplane模式支持12.5、25、50Mbps的传输速率;Cable模式支持100、200、400Mbps的传输速率。目前最新的IEEE 1394b标准能达到800Mbps的传输速率。IEEE1394是横跨PC及家电产品平台的一种通用界面,适用于大多数需要高速数据传输的产品,如高速外置式硬盘、CD-ROM、DVD-ROM、扫描仪、打印机、数码相机、摄影机等。IEEE 1394分为有供电功能的6针A型接口和无供电功能的4针B型接口,A型接口可以通过转接线兼容B型,但是B型转换成A型后则没有供电的能力。6针的A型接口在Apple的电脑和周边设备上使用很广,而在消费类电子产品以及PC上多半都是采用的简化过的4针B型接口,需要配备单独的电源适配器。IEEE1394接口可以直接当做网卡联机,也可以通过Hub扩展出更多的接口。没有IEEE1394接口的主板也可以通过插接IEEE 1394扩展卡的方式获得此功能。
RAID
RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。利用RAID技术于存储系统的好处主要有以下三种:
通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能 通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度 通过镜像或校验操作提供容错能力
最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。目前来看RAID在节省成本方面的作用并不明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。常用的RAID级别有以下几种:NRAID,JBOD,RAID0,RAID1,RAID0+1,RAID3,RAID5等。目前经常使用的是RAID5和RAID(0+1)。
NRAID
NRAID即Non-RAID,所有磁盘的容量组合成一个逻辑盘,没有数据块分条(no block stripping)。NRAID不提供数据冗余。要求至少一个磁盘。
JBOD
JBOD代表Just a Bunch of Drives,磁盘控制器把每个物理磁盘看作独立的磁盘,因此每个磁盘都是独立的逻辑盘。JBOD也不提供数据冗余。要求至少一个磁盘。
RAID 0
RAID 0即Data Stripping(数据分条技术)。整个逻辑盘的数据是被分条(stripped)分布在多个物理磁盘上,可以并行读/写,提供最快的速度,但没有冗余能力。要求至少两个磁盘。我们通过RAID 0可以获得更大的单个逻辑盘的容量,且通过对多个磁盘的同时读取获得更高的存取速度。RAID 0首先考虑的是磁盘的速度和容量,忽略了安全,只要其中一个磁盘出了问题,那么整个阵列的数据都会不保了。
RAID 1
RAID 1,又称镜像方式,也就是数据的冗余。在整个镜像过程中,只有一半的磁盘容量是有效的(另一半磁盘容量用来存放同样的数据)。同RAID 0相比,RAID 1首先考虑的是安全性,容量减半、速度不变。
RAID 0+1
为了达到既高速又安全,出现了RAID 10(或者叫RAID 0+1),可以把RAID 10简单地理解成由多个磁盘组成的RAID 0阵列再进行镜像。
RAID 3和RAID 5
RAID 3和RAID 5都是校验方式。RAID 3的工作方式是用一块磁盘存放校验数据。由于任何数据的改变都要修改相应的数据校验信息,存放数据的磁盘有好几个且并行工作,而存放校验数据的磁盘只有一个,这就带来了校验数据存放时的瓶颈。RAID 5的工作方式是将各个磁盘生成的数据校验切成块,分别存放到组成阵列的各个磁盘中去,这样就缓解了校验数据存放时所产生的瓶颈问题,但是分割数据及控制存放都要付出速度上的代价。
按照硬盘接口的不同,RAID分为SCSI RAID,IDE RAID和SATA RAID。其中,SCSI RAID主要用于要求高性能和高可靠性的服务器/工作站,而台式机中主要采用IDE RAID和SATA RAID。
以前RAID功能主要依靠在主板上插接RAID控制卡实现,而现在越来越多的主板都添加了板载RAID芯片直接实现RAID功能,目前主流的RAID芯片有HighPoint的HTP372和Promise的PDC20265R,而英特尔更进一步,直接在主板芯片组中支持RAID,其ICH5R南桥芯片中就内置了SATA RAID功能,这也代表着未来板载RAID的发展方向---芯片组集成RAID。
二十四:主板 : 双通道内存
双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865、875系列,而AMD方面则是NVIDIA Nforce2系列。
双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400、533、800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266、DDR 333、DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266、333、400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266、DDR 333、DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。
NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。
普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。
支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P、865G、865GV、865PE、875P以及之后的915、925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。
AMD的64位CPU,由于集成了内存控制器,因此是否支持内存双通道看CPU就可以。目前AMD的台式机CPU,只有939接口的才支持内存双通道,754接口的不支持内存双通道。除了AMD的64位CPU,其他计算机是否可以支持内存双通道主要取决于主板芯片组,支持双通道的芯片组上边有描述,也可以查看主板芯片组资料。此外有些芯片组在理论上支持不同容量的内存条实现双通道,不过实际还是建议尽量使用参数一致的两条内存条。
内存双通道一般要求按主板上内存插槽的颜色成对使用,此外有些主板还要在BIOS做一下设置,一般主板说明书会有说明。当系统已经实现双通道后,有些主板在开机自检时会有提示,可以仔细看看。由于自检速度比较快,所以可能看不到。因此可以用一些软件查看,很多软件都可以检查,比如cpu-z,比较小巧。在“memory”这一项中有“channels”项目,如果这里显示“Dual”这样的字,就表示已经实现了双通道。两条256M的内存构成双通道效果会比一条512M的内存效果好,因为一条内存无法构成双通道。
二十五:主板 : 北桥芯片
北桥芯片(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔 845E芯片组的北桥芯片是82845E,875P芯片组的北桥芯片是82875P等等。北桥芯片负责与CPU的联系并控制内存、AGP、PCI数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、ISA/PCI/AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。
由于已经发布的AMD K8核心的CPU将内存控制器集成在了CPU内部,于是支持K8芯片组的北桥芯片变得简化多了,甚至还能采用单芯片芯片组结构。这也许将是一种大趋势,北桥芯片的功能会逐渐单一化,为了简化主板结构、提高主板的集成度,也许以后主流的芯片组很有可能变成南北桥合一的单芯片形式(事实上SIS老早就发布了不少单芯片芯片组)。
由于每一款芯片组产品就对应一款相应的北桥芯片,所以北桥芯片的数量非常多。针对不同的平台,目前主流的北桥芯片有以下产品(不包括较老的产品而且只对用户最多的英特尔芯片组作较详细的说明)
上图主板中间,紧靠着CPU插槽,上面覆盖着银白色散热片的芯片就是主板的北桥芯片。
英特尔平台方面:
英特尔
845系列芯片组的82845E/82845GL/82845G/82845GV/82845GE/82845PE,除82845GL以外都支持533MHz FSB(82845GL只支持400MHz FSB),支持内存方面,所有845系列北桥都支持最大2GB内存。82845GL/82845E支持DDR 266,其余都支持DDR 333。除82845GL/82845GV之外都支持AGP 4X规范;865系列芯片组的82865P/82865G/82865PE/82865GV/82848P,除82865P之外都支持800MHz FSB,DDR 400(82865P只支持533MHz FSB,DDR 333,除82848P之外都支持双通道内存以及最大4GB内存容量(82848P只支持单通道最大2GB内存),除82865GV之外都支持AGP 8X规范;还有目前最高端的875系列的82875P北桥,支持800MHz FSB,4GB双通道DDR 400以及PAT功能。英特尔的芯片组或北桥芯片名称中带有“G”字样的还整合了图形核心。
SIS
主要有支持DDR SDRAM内存的SIS648/SIS648FX/SIS655/SIS655FX/SIS655TX以及整合了图形核心的SIS661FX,还有支持RDRAM内存的SISR659等等。
ATI
主要就是Radeon 9100 IGP北桥芯片,这是目前英特尔平台图形性能最强劲的整合芯片组北桥芯片。
VIA
主要有比较新的PT800/PT880/PM800/PM880以及较早期的P4X400/P4X333/P4X266/P4X266A/P4X266E/P4M266等等,其中,VIA芯片组名称或北桥名称中带有“M”字样的还整合了图形核心(英特尔平台和AMD平台都如此)。
Ali
离开芯片组市场多年,目前产品不多,主要是比较新的M1681和M1683。
AMD平台方面
VIA
主要有支持K7系列CPU(Athlon/Duron/Athlon XP)的比较新的KT880/KT600/KT400A以及较早期的KT400/KM400/KT333/KT266A/KT266/KT133/KT133A等等。支持K8系列CPU(Opteron/Athlon 64/Athlon 64 FX )的有K8T800和K8M800。
SIS
主要有支持K7系列CPU的SIS748/SIS746/SIS746FX/SIS745/SIS741/SIS741GX/SIS740/SIS735,以及支持k8系列CPU的SIS755/SIS755FX/SIS760等等。
NVIDIA
主要有支持K7系列CPU的nForce2 IGP/SPP,nForce2 Ultra 400,nForce2 400以及支持K8系列CPU的nForce3 150和nForce3 250等等。
ALi
离开芯片组市场多年,目前产品不多,主要有支持K8系列CPU的M1687和M1689。
二十六:主板 : AC97声卡
AC97标准的提出
1996年6月,5家PC领域中颇具知名度和权威性的软硬件公司共同提出了一种全新思路的芯片级PC音源结构,也就是我们现在所见的AC97标准(AUDIO CODEC97)。这5家电脑公司包括了在主板芯片组领域占有举足轻重位置且市场占有率第一的INTEL公司、声卡业界的龙头大哥新加坡的创新科技公司(CREATIVE LABS)、在MIDI领域享有盛誉的日本YAMAHA 公司、芯片组制造大厂美国国家半导体及专门制造信息处理器系统的美国ANALONG DEVICES公司。与此同时,AC97标准同时也得到了国际上一些其它著名品牌厂商的大力支持和合作意向,其中包括比较著名的AZTECH LABS、CRYSTAL SEMICONDUCTOR、ESS TECHNOLOGY、OAK TECHNOLOGY公司等。从支持AC97标准的各大公司阵容来分析,AC97标准在当时的提出,其主要目的就是给未来的家用PC提供更出色、更高级的音源品质。AC97标准作为一种全新的音源架构,主要就是针对于PC多媒体市场需求日益迫切的音源信号处理方式和音源硬件加速方式而强化的两项功能,并据此提出了一种切实可行的解决方案。这种解决方案简而言之,就是把它们全部集成在芯片组中,以此来形成一种全新的PC音源架构。可以想见,在不久的将来PC多媒体音效市场必将由此而引发一场深层次的革命,一如当年AGP标准对显示卡业界的冲击。
众所周知,以往电脑音效厂商为了能够在PC机上加强各种音效处理,特别是增强3D音效的部分,逐渐发展并提出了许多技术规格来借以加强3D音效。就象早期的ISA声卡,由于其集成度不高,声卡上散布了大量元器件,后来随着技术和工艺水平的发展,出现了单芯片的声卡,只用一块芯片就可以完成所有的声卡功能。如YAMAHA719、ALS007、AD1816等,由于数字部分和模拟部分同处在一块上,很难降低电磁串扰对模拟部分的影响,使ISA声卡信噪比并不理想,一般只能达到60-75分贝。只有少数象创新AWE系列的高档声卡信噪比能达到80分贝以上。从目前观之,发展最快、最成熟、最完善也是当前最重要的,当属模拟与数字两种处理技术。重要的模拟音效处理技术包括SRS(SOUND RETRIEVAL SYSTEM)-SRS LABS、SPATIALIZER-DESPER PRODUCTS、QXPANDER-QSOUND LABS等。而相对于数字音效技术,目前仍然主要利用DSP芯片来完成诸如3D立体音效的处理。尽管数字音效处理所花费的成本可能较之于模拟音效处理技术要高出很多,但其具备能够同时集成不同音源的优势,并将会逐渐成为新一代音效处理标准。
因此可以这样讲,由5家业内厂商共同推出的新一代AC97标准规格,从根本上改进了传统的音源处理方式,首次采用了双芯片结构。AC97标准结合了数字处理和模拟处理双方面的优点,一方面减少了由模拟线路转换至数字线路时可能会出现的噪声,营造出了更加纯净的音质;另一方面,将音效处理集成到芯片组后,可以进一步协助厂商降低成本。另外,从另一个角度来分析,随着USB标准和IEEE 1394的日趋流行,而目前的PC声音信号仍然只能通过PCI或ISA总线进行传输,也确实到了必须加以改进不可的时候了。时不我待,AC97标准规格也正是面对这样一个形势应运而生的产物。对于最终用户的消费者而言,既能够得到比以前更为优质的高品质声音,同时又能够进一步降低自己的购置费用,一石而二鸟,何乐而不为呢?
97年后,市场上出现的PCI声卡大多已经开始符合AC97标准规范,把模拟部分的电路从声卡芯片可中独立出来,成为一块称之为Audio Codec的小型芯片,如图所示,左上角那块WM9701就是Wolfson生产的AC97芯片,中央的大芯片为FORTEMEDIA公司的FM801,可称之为Digital Control,是数字部分,简写为DC\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"97芯片。DC\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"97完成大部分声卡功能,如WAV回放,MIDI合成,音效处理等,再把PCM的数字信号通过与AC97相连的5条引线送到AC97芯片中,由AC97芯片完成数字和模拟信号的转换后输出到音箱。别看AC97芯片只有7X7mm见方,48脚的TQFP封装,它比普通DAC能完成更多的功能,还包含有把模拟信号转换为数字信号的ADC,多路模拟信号混合输入及输出,就象音响中的数字编码/解码器和前置功放的作用。如图1右上角的VIDEO的PHONE接口,可以联接第二只CDROM和电视卡的音频输出。不同AC97芯片之间引脚兼容,原则上可以互相替代,购买声卡时可注意一下AC97芯片的型号,因为AC97芯片生产厂商众多,性能也大不一样。早期的PCI声卡售价高,材料也用得足,如YAMAHA724声卡上的AC97芯片采用了SigmaTel的STAC97系列,而后期为了降低成本,采用了廉价的AC97芯片,性能不升反降,购买时一定要注意。不妨先看看高档声卡上的AC97芯片,记下其型号和厂商,以备在选购声卡时对照。SigmaTel的STAC97系列常用于高档声卡,如创新的PCI128 Digital采用了STAC9708芯片,支持四声道输出。SigmaTel最新的STAC9744芯片信噪比高达96分贝。象AD、Crystal、华邦等厂商生产的AC97芯片性能比它低,但大多数能达到80分贝的信噪比,常见于中低档声卡和主板集成声卡中。有的声卡宣称信噪比是如何优秀,其实并不是采用何种主芯片的关系,是全仗采用AC97芯片性能的优秀。普通AC97芯片十万块售价为4美元左右,名牌的产品价格更高。这使有的声卡生产厂商改变电路设计,市场上常见售价低于100元的声卡就没有采用AC97芯片,象CMI8738、ALS4000、VIBRA128等,是单芯片结构,数字部分和模拟部不分离,虽然降低了成本,不过信噪比是达不到80分贝的。现在可以回过头来看主板上的AC97声卡是怎么回事了,自VIA和INTEL相继在南桥芯片中加入声卡的功能,通过软件模拟声卡,完成一般声卡上主芯片的功能,音频输出就交由一块AC97芯片完成。所以这类主板看不到上面有较大的声卡芯片,只有一块小小的AC97芯片。与直接集成的硬声卡相比,由于采用软件模拟,CPU占用率比一般声卡高,如果CPU速度达不到要求或因为驱动软件问题,就很容易会产生爆音影响音质。为解决类似问题和提高性能,有的主板采用了集成硬声卡的方式,较正规也符合AC97标准,有一块较大的主流声卡芯片,还有一块较小的AC97芯片。而低成本集成声卡往往采用不符合AC97标准的声卡,如CMI8738等四声道音效芯片,其芯片成本与较高档AC97芯片也高不到那里去,但用户更乐意接受硬声卡,而不去关心其是否另带AC97芯片。
AC97标准的规格
采用双芯片的PC声音解决方案;
两种标准的封装方式:48针和64针;
数字/模拟信号分离,全面改善信噪比(>90db);
16位立体声全双工codec、固定48K采样频率;
4种模拟立体声输入,分别来自LINE、CD、VIDEO、AUX;
两种模拟单声道输入,分别来自麦克风和PC喇叭;
可从两个外接音源交换的单声道麦克风进行输入;
高品质的CD输入;
立体声线性输出;
电话单声道输出;
支持电源管理;
可选音调控制;
可选高音控制;
可选3D立体声增强;
可选立体声耳机输出;
可选18或20位DAC及ADC分辩;
可选MODEM线性codec(ADC和DAC);
可为麦克风选择第三个ADC输入通道。
由上述不难看出,AC97标准对于电路的要求更加严格。根据AC97标准的规定,由于IC电路集成度较高,将DAC、ADC及其它相关的数字电路集成成为芯片形式后,不仅能够减少整个系统的设计成本,同时也可以获得更好、更有效的声音效果。这一点完全可以从其信噪比至少要求90db可以看出。此外,由于采用了双芯片的设计形式,厂商们在设计方面也可以更加灵活,更易于在整个系统中的集成。同时,从某种意义上讲,AC97标准也为另外一个重要课题,即百分之百数字音效PC提供了一套完整的解决方案。那么,新的概念又来了,什么是百分之百数字音效PC呢?顾名思义,即在一部PC中,所有的声音来源或输出都是采用数字方式来处理的,即使是在电脑内部,所有声音也都将以数字的方式来传输。利用这种方式,用户们想来就可以得到更好的声音效果,避免了数字线路与模拟线路转换过程中可能产生的大量噪声。以前,受成本、保持向下兼容以及无法有效利用PC资源系统等诸多因素的影响(如CPU、RAM、总线),百分之百数字音效PC一直没有一套切实可行的解决方案。AC97标准正是妥善考虑到了这一点,提出了“与总线无关”的声音输出概念。在这个方案中,声音信号仍然可以通过传统的总线方式传输,如ISA或PCI。但现在它也能重新导向至USB或IEEE 1394总线,所以无论模拟输出(DAC做在PC内部,声音输出到标准立体声音箱)还是数字输出(DAC做在PC外部,声音输出到USB或IEEEE 1394连接器,即所谓的USB音箱等)均可以随心所欲,任意左右。
AC97的硬件加速机制
传统的音效硬件加速方式:IN-LINE
以下就以播放DVD为例,先来简单说明一下传统的音效处理加速方式。
众所周知,一部电脑在播放DVD-ROM时,CPU处理器肯定是先把编码过的杜比AC-3声音从MPEG-2影片中分离出来,并将其放置在DRAM缓冲区内,再通过AC-3硬件解压缩设备从DRAM的缓冲区内将音效数据提出、解码,最后与5.1声道混合成为双声道输出,
最终达成IN-LINE音效硬件加速的目的。
明白了这一点,下面再让我们一起来对比看一看AC97标准的音效硬件加速方式:multi-trip
符合AC97标准规格的芯片组与传统的音效输出方式不同,此时的音效数据可以改向传至USB或IEEE 1394。其具体实现主要有以下几个步骤:第一步先由AC-3硬件加速装置从DRAM中提取出CPU处理器事先已经分离出的数据;第二步由AC-3执行解压缩与混音操作,把合成后的数据重新送入DRAM中的另一块缓存区。这时会产生一个中断信号,以此来告诉操作系统,合成声音数据已经准备完毕;第三步操作系统会协同CPU处理器将已经处理好的声音数据转移到新的缓冲区,然后将数据送入USB管道,等待输出;最后一步是USB控制器取得相关的声音数据后将其送至相对应的数字扬声器。
如何在系统中实现AC97的标准
为了让厂商真正将符合AC97标准的芯片组顺利移植到主板上,INTEL公司建议设计者采用以下三种方式:
一是,将控制器和声音解码芯片全部都整合在主板上,让这二者通过AC-LINK加以沟通。这样做的好处在于,芯片组与主板之间的整合度可以达到最佳;
二是,将控制器做在主板上,而将声音解码芯片做在接口卡上,让二者仍然通过AC-LINK进行沟通。这样一来,用户便可以比较灵活地选择解码芯片。另外,在接口卡上也可以选择性地添加modem语音部分的传输功能。
三是,将控制器和解码芯片全部都做在卡上,通过32或64位PCI总线与其它外设进行沟通。当然,采用IEEE 1394或USB与主板通信也是可行的,只要控制器能够支持IEEE 1394或USB接口便可以了。当然,除此之外还要搭配一条SIDEBAND HEADER的信号线,完成控制器与主板的连接。应该说,采用这种方式的设计难度最小,主板设计厂商们只要在自己的主板上预留出SIDEBAND HEADER的信号线插座及相关的电路便一切OK了。
二十七:主板 : PCI-Express
PCI-Express是目前比较流行的总线和接口标准,它原来的名称为“3GIO”,是由英特尔提出的,很明显英特尔的意思是它代表着下一代I/O接口标准。交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”。这个新标准将全面取代现行的PCI和AGP,最终实现总线标准的统一。它的主要优势就是数据传输速率高,目前最高可达到10GB/s以上,而且还有相当大的发展潜力。PCI Express也有多种规格,从PCI Express 1X到PCI Express 16X,能满足现在和将来一定时间内出现的低速设备和高速设备的需求。能支持PCI Express的主要是英特尔的i915和i925系列芯片组。当然要实现全面取代PCI和AGP也需要一个相当长的过程,就象当初PCI取代ISA一样,都会有个过渡的过程。
图中黑色的那条就是PCIE插槽
二十八:主板 : 支持CPU数
支持CPU数顾名思义就是指支持CPU的个数,一般主板都支持一个CPU,而服务器主板一般都支持2个或者2个以上的CPU
二十九:主板 : 什么是酷睿
是英特尔推出的新一代基于Core微架构的产品体系统称。于2006年7月27日发布。
一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Conroe,移动版的开发代号为Merom。
三十:主板 : CMOS与BIOS
CMOS是互补金属氧化物半导化的缩写。本意是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片。其实,在这里是指主板上一块可读写的存储芯片。它存储了微机系统的时钟信息和硬件配置信息等,共计128个字节。系统加电引导时,要读取CMOS信息,用来初始化机器各个部件的状态。它靠系统电源或后备电池来供电,关闭电源信息不会丢失。
BIOS是基本输入输出系统的缩写。指集成在主板上的一个ROM芯片,其中保存了微机系统最重要的基本输入输出程序、系统开机自检程序等。它负责开机时,对系统各项石硬件进行初始化设置和测试,以保证系统能正常工作。
由于CMOS与BIOS都跟微机系统设置密切相关,所以才有CMOS设置与BIOS设置的说法,CMOS是系统存放参数的地方,而BIOS中的系统设置程序是完成参数设置的手段。因此,准确的说法是通过BIOS设置程序对CMOS参数进行设置。而我们平常所说的CMOS设置与BIOS设置是其简化说法,也就在一定程度上造成两个概念的混淆。
三十一:主板 : 适用类型
主板适用类型,是指该主板所适用的应用类型。针对不同用户的不同需求、不同应用范围,主板被设计成各不相同的类型,即分为台式机主板和服务器/工作站主板。
台式机主板
台式机主板
台式机主板,就是平常大部分场合所提到的应用于PC的主板,板型是ATX或Micro ATX结构,使用普通的机箱电源,采用的是台式机芯片组,只支持单CPU,内存最大只能支持到4GB,而且一般都不支持ECC内存。存储设备接口也是采用IDE或SATA接口,某些高档产品会支持RAID。显卡接口多半都是采用AGP 4X或AGP 8X,某些高档产品也会采用AGP Pro接口以支持某些高能耗的高档显卡。扩展接口也比较丰富,有多个USB2.0/1.1,IEEE1394,COM,LPT,IrDA等接口以满足用户的不同需求。扩展插槽的类型和数量也比较多,有多个PCI,CNR,AMR等插槽适应用户的需求。部分带有整合的网卡芯片,有低档的10/100Mbps自适应网卡,也有高档的千兆网卡。在价格方面,既有几百元的入门级或主流产品,也有一二千元的高档产品以满足不同用户的需求,。台式机主板的生产厂商和品牌也非常多,市场上常见的就有几十种之多。
服务器/工作站主板
服务器/工作站主板,则是专用于服务器/工作站的主板产品,板型为较大的ATX,EATX或WATX,使用专用的服务器机箱电源。其中,某些低端的入门级产品会采用高端的台式机芯片组,例如英特尔的I875P芯片组就被广泛用在低端入门级产品上;而中高端产品则都会采用专用的服务器/工作站芯片组,例如英特尔 E7501,Sever Works GC-SL等芯片组。对服务器/工作站主板而言,最重要的是高可靠性和稳定性,其次才是高性能。因为大多数的服务器都要满足每天24小时、每周7天的满负荷工作要求。由于服务器/工作站数据处理量很大,需要采用多CPU并行处理结构,即一台服务器/工作站中安装2、4、8等多个CPU;对于服务器而言,多处理器可用于数据库处理等高负荷高速度应用;而对于工作站,多处理器系统则可以用于三维图形制作和动画文件编码等单处理器无法实现的高处理速度应用。为适应长时间,大流量的高速数据处理任务,在内存方面,服务器/工作站主板能支持高达十几GB甚至几十GB的内存容量,而且大多支持ECC内存以提高可靠性。
服务器主板
服务器主板在存储设备接口方面,中高端产品也多采用SCSI接口而非IDE接口,并且支持RAID方式以提高数据处理能力和数据安全性。在显示设备方面,服务器与工作站有很大不同,服务器对显示设备要求不高,一般多采用整合显卡的芯片组,例如在许多服务器芯片组中都整合有ATI的RAGE XL显示芯片,要求稍高点的采用普通的AGP显卡,甚至是PCI显卡;而图形工作站对显卡的要求非常高,主板上的显卡接口也多采用AGP Pro 150,而且多采用高端的3DLabs、ATI等显卡公司的专业显卡,如3DLabs的“野猫”系列显卡,中低端则采用NVIDIA的Quandro系列以及ATI的Fire GL系列显卡等等。在扩展插槽方面,服务器/工作站主板与台式机主板也有所不同,例如PCI插槽,台式机主板采用的是标准的33MHz的32位PCI插槽,而服务器/工作站主板则多采用64位的PCI X-66甚至PCI X-133,其工作频率分别为66MHz和133MHz,数据传输带宽得到了极大的提高,并且支持热插拔,其电气规范以及外型尺寸都与普通的PCI插槽不同。在网络接口方面,服务器/工作站主板也与台式机主板不同,服务器主板大多配备双网卡,甚至是双千兆网卡以满足局域网与Internet的不同需求。服务器主板技术要求非常高,所以与台式机主板相比,生产厂商也就少得多了,比较出名的也就是英特尔、超微、华硕、技嘉、泰安、艾崴等品牌,在价格方面,从一千多元的入门级产品到几万元甚至十几万元的高档产品都有。
三十二:主板 : 硬盘接口类型
硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与计算机之间的连接速度,在整个系统中,硬盘接口的优劣直接影响着程序运行快慢和系统性能好坏。从整体的角度上,硬盘接口分为IDE、SATA、SCSI和光纤通道四种,IDE接口硬盘多用于家用产品中,也部分应用于服务器,SCSI接口的硬盘则主要应用于服务器市场,而光纤通道只在高端服务器上,价格昂贵。SATA是种新生的硬盘接口类型,还正出于市场普及阶段,在家用市场中有着广泛的前景。在IDE和SCSI的大类别下,又可以分出多种具体的接口类型,又各自拥有不同的技术规范,具备不同的传输速度,比如ATA100和SATA;Ultra160 SCSI和Ultra320 SCSI都代表着一种具体的硬盘接口,各自的速度差异也较大。
IDE
IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,它的本意是指把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器。把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为硬盘生产厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容。对用户而言,硬盘安装起来也更为方便。IDE这一接口技术从诞生至今就一直在不断发展,性能也不断的提高,其拥有的价格低廉、兼容性强的特点,为其造就了其它类型硬盘无法替代的地位。
主板IDE接口
IDE代表着硬盘的一种类型,但在实际的应用中,人们也习惯用IDE来称呼最早出现IDE类型硬盘ATA-1,这种类型的接口随着接口技术的发展已经被淘汰了,而其后发展分支出更多类型的硬盘接口,比如ATA、Ultra ATA、DMA、Ultra DMA等接口都属于IDE硬盘。
SCSI
SCSI的英文全称为“Small Computer System Interface”(小型计算机系统接口),是同IDE(ATA)完全不同的接口,IDE接口是普通PC的标准接口,而SCSI并不是专门为硬盘设计的接口,是一种广泛应用于小型机上的高速数据传输技术。SCSI接口具有应用范围广、多任务、带宽大、CPU占用率低,以及热插拔等优点,但较高的价格使得它很难如IDE硬盘般普及,因此SCSI硬盘主要应用于中、高端服务器和高档工作站中。
光纤通道
光纤通道的英文拼写是Fibre Channel,和SCIS接口一样光纤通道最初也不是为硬盘设计开发的接口技术,是专门为网络系统设计的,但随着存储系统对速度的需求,才逐渐应用到硬盘系统中。光纤通道硬盘是为提高多硬盘存储系统的速度和灵活性才开发的,它的出现大大提高了多硬盘系统的通信速度。光纤通道的主要特性有:热插拔性、高速带宽、远程连接、连接设备数量大等。
光纤通道是为在像服务器这样的多硬盘系统环境而设计,能满足高端工作站、服务器、海量存储子网络、外设间通过集线器、交换机和点对点连接进行双向、串行数据通讯等系统对高数据传输率的要求。
SATA
使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
支持Serial-ATA技术的标志
主板上的Serial-ATA接口
串口硬盘是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行ATA来说,就具有非常多的优势。首先,Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/s,这比目前最新的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高,而在Serial ATA 2.0的数据传输率将达到300MB/s,最终SATA将实现600MB/s的最高数据传输率。
三十二:主板 : 磁盘阵列RAID
RAID,廉价冗余磁盘阵列,是Redundant Arrays of Independent Disks的简称。
磁盘阵列可以分为软阵列和硬阵列两种。软阵列就是通过软件程序来完成,要由计算机的处理器提供运算能力,只能提供最基本的RAID容错功能。硬阵列是由独立操作的硬件(阵列卡)提供整个磁盘阵列的控制和计算功能,卡上具备独立的处理器,不依靠系统的CPU资源,所有需要的容错功能均可以支持,所以硬阵列所提供的功能和性能均比软阵列好。
作为高性能的存储技术,RAID巳经得到了越来越广泛的应用。RAID的级别从RAID概念的提出到现在,巳经发展了很多个级别,但是最常用的是0、1、3、5四个级别。下面就介绍这四个级别。
RAID 0:把多个磁盘合并成一个大的磁盘,不具有冗余功能,并行I/O,速度最快。它是将多个磁盘并列起来,成为一个大硬盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些磁盘中。所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能,如果一个磁盘(物理)损坏,则所有的数据都无法使用。
RAID 1:两组相同的磁盘系统互作镜像,速度没有提高,但是允许单个磁盘出错,可靠性最高。RAID 1就是镜像。其原理为在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。因为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%,是所有RAID上磁盘利用率最低的一个级别。
RAID 3 存放数据的原理和RAID 0、RAID 1不同。RAID 3是以一个硬盘来存放数据的奇偶校验位,数据则分段存储于其余硬盘中。它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。如果数据盘(物理)损坏,只要将坏硬盘换掉,RAID控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。但缺点是作为存放校验位的硬盘,工作负荷会很大,因为每次写操作,都会把生成的校验信息写入该磁盘,而其它磁盘的负荷相对较小,这会对性能有一定的影响。
RAID 5:在RAID 3的基础上,RAID 5进行了一些改进,当向阵列中的磁盘写数据,奇偶校验数据均匀存放在阵列中的各个盘上,允许单个磁盘出错。RAID 5也是以数据的校验位来保证数据的安全,但它不是以单独硬盘来存放数据的校验位,而是将数据段的校验位交互存放于各个硬盘上。这样,任何一个硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。硬盘的利用率也是n-1。
三十三:主板 : 显卡插槽
是指显卡与主板连接所采用的接口种类。显卡的接口决定着显卡与系统之间数据传输的最大带宽,也就是瞬间所能传输的最大数据量。不同的接口决定着主板是否能够使用此显卡,只有在主板上有相应接口的情况下,显卡才能使用,并且不同的接口能为显卡带来不同的性能。
目前各种3D游戏和软件对显卡的要求越来越高,主板和显卡之间需要交换的数据量也越来越大,过去的插槽早已不能满足这样大量的数据交换,因此通常主板上都带有专门插显卡的插槽。假如显卡插槽的传输速度不能满足显卡的需求,显卡的性能就会受到巨大的限制,再好的显卡也无法发挥。显卡发展至今主要出现过ISA、PCI、AGP、PCI Express等几种接口,所能提供的数据带宽依次增加。其中2004年推出的PCI Express接口已经成为主流,以解决显卡与系统数据传输的瓶颈问题,而ISA、PCI接口的显卡已经基本被淘汰。
PCIE接口显卡
AGP接口显卡
三十四:主板 : 板载RAID
RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。利用RAID技术于存储系统的好处主要有以下三种:
通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能 通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度 通过镜像或校验操作提供容错能力
最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。目前来看RAID在节省成本方面的作用并不明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。常用的RAID级别有以下几种:NRAID,JBOD,RAID0,RAID1,RAID0+1,RAID3,RAID5等。目前经常使用的是RAID5和RAID(0+1)。
NRAID
NRAID即Non-RAID,所有磁盘的容量组合成一个逻辑盘,没有数据块分条(no block stripping)。NRAID不提供数据冗余。要求至少一个磁盘。
JBOD
JBOD代表Just a Bunch of Drives,磁盘控制器把每个物理磁盘看作独立的磁盘,因此每个磁盘都是独立的逻辑盘。JBOD也不提供数据冗余。要求至少一个磁盘。
RAID 0
RAID 0即Data Stripping(数据分条技术)。整个逻辑盘的数据是被分条(stripped)分布在多个物理磁盘上,可以并行读/写,提供最快的速度,但没有冗余能力。要求至少两个磁盘。我们通过RAID 0可以获得更大的单个逻辑盘的容量,且通过对多个磁盘的同时读取获得更高的存取速度。RAID 0首先考虑的是磁盘的速度和容量,忽略了安全,只要其中一个磁盘出了问题,那么整个阵列的数据都会不保了。
RAID 1
RAID 1,又称镜像方式,也就是数据的冗余。在整个镜像过程中,只有一半的磁盘容量是有效的(另一半磁盘容量用来存放同样的数据)。同RAID 0相比,RAID 1首先考虑的是安全性,容量减半、速度不变。
RAID 0+1
为了达到既高速又安全,出现了RAID 10(或者叫RAID 0+1),可以把RAID 10简单地理解成由多个磁盘组成的RAID 0阵列再进行镜像。
RAID 3和RAID 5
RAID 3和RAID 5都是校验方式。RAID 3的工作方式是用一块磁盘存放校验数据。由于任何数据的改变都要修改相应的数据校验信息,存放数据的磁盘有好几个且并行工作,而存放校验数据的磁盘只有一个,这就带来了校验数据存放时的瓶颈。RAID 5的工作方式是将各个磁盘生成的数据校验切成块,分别存放到组成阵列的各个磁盘中去,这样就缓解了校验数据存放时所产生的瓶颈问题,但是分割数据及控制存放都要付出速度上的代价。
按照硬盘接口的不同,RAID分为SCSI RAID,IDE RAID和SATA RAID。其中,SCSI RAID主要用于要求高性能和高可靠性的服务器/工作站,而台式机中主要采用IDE RAID和SATA RAID。
以前RAID功能主要依靠在主板上插接RAID控制卡实现,而现在越来越多的主板都添加了板载RAID芯片直接实现RAID功能,目前主流的RAID芯片有HighPoint的HTP372和Promise的PDC20265R,而英特尔更进一步,直接在主板芯片组中支持RAID,其ICH5R南桥芯片中就内置了SATA RAID功能,这也代表着未来板载RAID的发展方向---芯片组集成RAID。
三十五:主板 : 内存传输标准
内存传输标准是指主板所支持的内存传输带宽大小或主板所支持的内存的工作频率。不同类型的内存其传输标准是不相同的。主板支持内存传输标准决定着,主板所能采用最高性能的内存规格,是选择购买主板的关键之一。
以下分别说明各种主流内存的传输标准。
SDRAM
标准的SDRAM分为66MHz SDRAM(即俗称的PC 66,但PC 66并非正规术语),PC 100以及PC 133,其标准工作频率分别为66MHz,100MHz和133MHz,对应的内存传输带宽分别为533MB/sec,800MB/sec和1.06GB/sec。非标准的还有PC 150等。需要注意的是,对所有的内存而言,内存的标准工作频率只是指其在此频率下能稳定工作,而并非只能工作在该频率下。高标准的SDRAM可以工作在较低的频率下,例如PC 133也可以工作在100MHz,只是此时内存性能不能得到完全发挥,性能大打折扣;而低标准的内存通过超频也可以工作在较高频率上以获得较高的内存性能,只是稳定性和可靠性要大打折扣。
SDRAM内存传输标准表:
DDR
标准的DDR SDRAM分为DDR 200,DDR 266,DDR 333以及DDR 400,其标准工作频率分别100MHz,133MHz,166MHz和200MHz,对应的内存传输带宽分别为1.6GB/sec,2.12GB/sec,2.66GB/sec和3.2GB/sec,非标准的还有DDR 433,DDR 500等等。初学者常被DDR 266,PC 2100等字眼搞混淆,在这里要说明一下,DDR 266与PC 2100其实就是一回事,只是表述方法不同罢了。DDR 266是指的该内存的工作频率(实际工作频率为133MHz,等效于266MHz 的SDRAM),而PC 2100则是指其内存传输带宽(2100MB/sec)。同理,PC 1600就是DDR 200,PC 2700就是DDR 333,PC 3200就是DDR 400。
DDR SDRAM内存传输标准表:
DDRII
DDR2可以看作是DDR技术标准的一种升级和扩展:DDR的核心频率与时钟频率相等,但数据频率为时钟频率的两倍,也就是说在一个时钟周期内必须传输两次数据。而DDR2采用“4 bit Prefetch(4位预取)”机制,核心频率仅为时钟频率的一半、时钟频率再为数据频率的一半,这样即使核心频率还在200MHz,DDR2内存的数据频率也能达到800MHz—也就是所谓的DDR2 800。
目前,已有的标准DDR2内存分为DDR2 400和DDR2 533,今后还会有DDR2 667和DDR2 800,其核心频率分别为100MHz、133MHz、166MHz和200MHz,其总线频率(时钟频率)分别为200MHz、266MHz、333MHz和400MHz,等效的数据传输频率分别为400MHz、533MHz、667MHz和800MHz,其对应的内存传输带宽分别为3.2GB/sec、4.3GB/sec、5.3GB/sec和6.4GB/sec,按照其内存传输带宽分别标注为PC2 3200、PC2 4300、PC2 5300和PC2 6400。
RDRAM
目前RDRAM有PC 600,PC 800,PC 1066和PC 1600等,其工作频率分别为300MHz,400MHz,533MHz和800MHz,其对应的内存传输带宽分别为1.2GB/sec,1.6GB/sec,2.12GB/sec和2.4GB/sec,并可组成双通道或四通道获得惊人的内存带宽。使用RDRAM时必须将内存插槽全部插满,如果内存条数量不够,必须使用专用的连接器插满内存插槽。
在选购好CPU和主板之后选购内存时,必须注意该主板所支持的内存类型和内存传输标准,以及是否支持双通道等等。要选购符合该主板要求的内存才能获得最佳的性能。
RDRAM内存传输标准表:
三十六:主板 : 支持内存最大容量
主板所能支持内存的最大容量是指最大能在该主板上插入多大容量的内存条,超过容量的内存条即便插在主板上,主板也无不支持。主板支持的最大内存容量理论上由芯片组所决定,北桥决定了整个芯片所能支持的最大内存容量。但在实际应用中,主板支持的最大内存容量还受到主板上内存插槽数量的限制,主板制造商出于设计、成本上的需要,可能会在主板上采用较少的内存插槽,此时即便芯片组支持很大的内存容量,但主板上并没有足够的内存插槽供适用,就没法达到理论最大值。
比如KT600北桥最大能支持4GB的内存,但大部分的主板厂商只提供了两个或三个184pin的DDR DIMM内存插槽,其支持最大内存容量就只能达到2GB或3GB。
三十七:主板 : 硬件监控
为了让用户能够了解硬件的工作状态(温度、转速、电压等),主板上通常有一块至两块专门用于监控硬件工作状态的硬件监控芯片。当硬件监控芯片与各种传感元件(电压、温度、转速)配合时,便能在硬件工作状态不正常时,自动采取保护措施或及时调整相应元件的工作参数,以保证电脑中各配件工作在正常状态下。常见的有温度控制芯片和通用硬件监控芯片等等。
温度控制芯片:主流芯片可以支持两组以上的温度检测,并在温度超过一定标准的时候自动调整处理器散热风扇的转速,从而降低CPU的温度。超过预设温度时还可以强行自动关机,从而保护电脑系统。常见的温度控制芯片有Analog Devices的ADT7463等等。
通用硬件监控芯片:这种芯片通常还整合了超级I/O(输出/输出管理)功能,可以用来监控受监控对象的电压、温度、转速等。对于温度的监控需与温度传感元件配合;对风扇电机转速的监控,则需与CPU或显卡的散热风扇配合。比较常见的硬件监控芯片有华邦公司的W83697HF和W83627HF,SMSC公司的LPC47M172,ITE公司的IT8705F、IT8703F,ASUS公司的AS99172F(此芯片能同时对三组系统风扇和三组系统温度进行监控)等。
三十八:主板 : AGP插槽
AGP是Accelerated Graphics Port(图形加速端口)的缩写,是显示卡的专用扩展插槽,它是在PCI图形接口的基础上发展而来的。AGP规范是英特尔公司解决电脑处理(主要是显示)3D图形能力差的问题而出台的。AGP并不是一种总线,而是一种接口方式。随着3D游戏做得越来越复杂,使用了大量的3D特效和纹理,使原来传输速率为133MB/sec的PCI总线越来越不堪重负,籍此原因Intel才推出了拥有高带宽的AGP接口。这是一种与PCI总线迥然不同的图形接口,它完全独立于PCI总线之外,直接把显卡与主板控制芯片联在一起,使得3D图形数据省略了越过PCI总线的过程,从而很好地解决了低带宽PCI接口造成的系统瓶颈问题。可以说,AGP代替PCI成为新的图形端口是技术发展的必然.
目前扩展插槽的种类主要有PCI-E,ISA,PCI,AGP,CNR,AMR,ACR和比较少见的WI-FI,VXB,以及笔记本电脑专用的PCMCIA等。历史上出现过,早已经被淘汰掉的还有MCA插槽,EISA插槽以及VESA插槽等等。未来的主流扩展插槽是PCI Express插槽。
三十九:主板 : 支持内存传输标准
内存传输标准是指主板所支持的内存传输带宽大小或主板所支持的内存的工作频率。不同类型的内存其传输标准是不相同的。主板支持内存传输标准决定着,主板所能采用最高性能的内存规格,是选择购买主板的关键之一。
以下分别说明各种主流内存的传输标准。
标准的SDRAM分为66MHz SDRAM(即俗称的PC 66,但PC 66并非正规术语),PC 100以及PC 133,其标准工作频率分别为66MHz,100MHz和133MHz,对应的内存传输带宽分别为533MB/sec,800MB/sec和1.06GB/sec。非标准的还有PC 150等。需要注意的是,对所有的内存而言,内存的标准工作频率只是指其在此频率下能稳定工作,而并非只能工作在该频率下。高标准的SDRAM可以工作在较低的频率下,例如PC 133也可以工作在100MHz,只是此时内存性能不能得到完全发挥,性能大打折扣;而低标准的内存通过超频也可以工作在较高频率上以获得较高的内存性能,只是稳定性和可靠性要大打折扣。
SDRAM内存传输标准表:
标准的DDR SDRAM分为DDR 200,DDR 266,DDR 333以及DDR 400,其标准工作频率分别100MHz,133MHz,166MHz和200MHz,对应的内存传输带宽分别为1.6GB/sec,2.12GB/sec,2.66GB/sec和3.2GB/sec,非标准的还有DDR 433,DDR 500等等。初学者常被DDR 266,PC 2100等字眼搞混淆,在这里要说明一下,DDR 266与PC 2100其实就是一回事,只是表述方法不同罢了。DDR 266是指的该内存的工作频率(实际工作频率为133MHz,等效于266MHz 的SDRAM),而PC 2100则是指其内存传输带宽(2100MB/sec)。同理,PC 1600就是DDR 200,PC 2700就是DDR 333,PC 3200就是DDR 400。
DDR SDRAM内存传输标准表:
目前RDRAM有PC 600,PC 800,PC 1066和PC 1600等,其工作频率分别为300MHz,400MHz,533MHz和800MHz,其对应的内存传输带宽分别为1.2GB/sec,1.6GB/sec,2.12GB/sec和2.4GB/sec,并可组成双通道或四通道获得惊人的内存带宽。使用RDRAM时必须将内存插槽全部插满,如果内存条数量不够,必须使用专用的连接器插满内存插槽。
在选购好CPU和主板之后选购内存时,必须注意该主板所支持的内存类型和内存传输标准,以及是否支持双通道等等。要选购符合该主板要求的内存才能获得最佳的性能。
RDRAM内存传输标准表:
四十:主板 : 硬件错误侦测
由于硬件的安装错误、不兼容或硬件损坏等原因,容易引起的硬件错误,从而导致轻则运行不正常,重则系统无法工作的故障。碰到此类情况,以前只能通过POST自检时的BIOS报警提示音,硬件替换法或通过DEBUG卡来查找故障原因。但这些方法使用起来很不方便,而且对用户的专业知识也要求较高,对普通用户并不适用。
针对此问题,现在的主板厂商加如了许多人性化的设计,以方便用户快速,准确地判断故障原因。
例如,现在许多主板特别设计了硬件加电自检故障的语言播报功能。以华硕的“POST播报员”为例,这个功能主要由华邦电子的W83791SD芯片,配合华硕自己设计芯片组合而成。可以监测CPU电压、CPU风扇转速、CPU温度、机壳风扇转速、电源风扇是否失效、机箱入侵警告等。这样就较好地保持了电脑的最佳工作状态。当系统有某个设备出故障时,POST播报员就会用语音提醒该配件出了故障。
在硬件侦错报警方面,一些主板大厂都有自己非常独到的设计,譬如微星主板,用四支LED来反映主板的故障所在。而有的主板则干脆引入了早些年的Debug侦错卡的侦错技术,采用了更为直接的数码管来指出故障所在。
另外,许多厂商还为主板设计了AGP保护电路,除了起显卡保护作用之外,保护电路还用一个LED发光二极管来告诉用户故障是否由显卡引起。
电脑主板的发展
ALi公司早期推出的芯片组有:不支持AGP的Aladdin III、Aladdin IV,支持AGP的Aladdin V等。 ● 整合就是流行:ALi TNT2
ALi(扬智)企业是一家专业从事半导体研究和生产的,ALI也是世界上著名的芯片组提供商。ALi TNT2这款芯片的名字是不是十分眼熟!它正是3D加速芯片业界的王者——NVIDIA的得力之作,此次ALi与NVIDIA合作,将TNT 2 M64核心整合入其芯片组中,因而诞生了ALi TNT2。ALi TNT2是由M1631北桥芯片和M1535D南桥芯片共同组成的,它可以支持最大1.5GB的PC100内存,其支持AMR、AC97、ATA66等技术标准,选择ALi TNT2便可以以较低的价格却换来较高质量的3D加速性能。
2000年7月,ALi推出首套支持Intel Celeron、Pentium II、Pentium III处理器的DDR桌上型系统芯片组ALADDiN-Pro 5。
同月,ALi又推出了首套支持AMD Athlon和Duron处理器的DDR 266桌上型系统芯片组ALiMAGiK 1,和笔记本芯片组MobileMAGiK 1。
ALiMAGiK 1、MobileMAGiK 1
ALi的ALI MAGiK1是最早发布支持DDR的芯片组,ALi MAGiK 1芯片组支持AMD Athlon/Duron以及Palomino核心的Athlon XP、Morgan核心的Duron处理器。
2001年3月推出首套支持Intel Pentium III处理器芯片组,并可同时适用于笔记本及桌上型电脑使用的DDR/SDR内存的——ALADDiN-Pro 5T。
ALADDiN-P4
2001年8月推出合法授权支持Intel Pentium 4/DDR 333的独立型芯片组ALADDiN-P4。
M1563
2002年6月发表全新支持x86-64技术的AMD Opteron和AMD Athlon64芯片组——M1687/M1563。
2003年扬智与宇力共同发表最新支持Intel P4 800 MHz芯片组——M1683。
主板的品牌很多,各厂家生产的主板品质也有所不同。品质是指主板的质量及稳定可靠性指标。品质不仅和主板的设计结构、生产工艺有关,也和生产厂家选用的零部件有很大关系。一块品质好的主板可以保证在各种情况下,例如温湿度变化、电场扰动等,获得稳定可靠的工作状态。用户在购买时,可以从产品外观、生产厂家背景以及返修率等方面考虑。一般,知名大公司在设计及生产工艺和原材料选用等方面比较严格,品质都很好,但价格一般也略微贵一些。
2.兼容性
主板由于要和各种各样的周边设备配合并运行各种操作系统及应用程序,所以兼容性是非常重要的。在硬件方面包括:对CPU的支持,是否支持Intel、AMD、IBM/Cyrix处理器,支持的内存,像EDO(扩展数据输出)、FPM(快速页式)、SDRAM(同步内存)等,支持各种常见品牌的显示卡、声卡、解压卡、网卡、传真卡、 SCSI卡、Modem卡和对即插即用的支持等。软件方面包括各种操作系统和应用软件能否运行,像MS-DOS 、Windows、 Windows 95、Windows NT、OS/ 2、Unix、Novell等。一般厂家都会有兼容性方面的测试报告供用户参考。
3.性能
速度指标也是大家购买时普遍关心的一个性能指标。各个厂家生产的主板速度有差异主要是因为采用的芯片组(CHIP SET)不同;高速缓存的设计及容量不同;线路设计与BIOS 设计最佳化不同;原配件或材料选用品质不同。速度指标可以用测试方法得到,一般取相同配置的主板(如芯片组相同、二级缓存相同),在相同配置(同样的CPU、内存、显示卡、硬盘等)下用专业的测试软件测得。
4.升级扩展性
计算机技术日新月异,为了保护您的投资,主板升级扩展性方面也应引起重视。主要包括以下几方面:CPU升级余地,支持哪几家公司的产品,是否支持MMX CPU等;内存升级能力,有几个DIMM(72线内存槽),多少个SIMM(168线内存插槽),最大内存容量;二级缓存速度及容量;有几个PCI和ISA插槽;BIOS可否升级等。
5.售后服务
售后服务包括产品保修、技术支持情况,能否获得最新的BIOS升级等。用户应从信誉好的商家和正规渠道的分销商处购买,以免买到水货或假货,损害自己的利益。
6.价格
市场上的主板价格从几百元到几千元都有,主要由于以下几点造成:
(1)主板的应用范围配置不同
比如说Pentium 级、Pentium Pro级和Pentium Ⅱ级主板之间有相当的差价。双CPU主板(主要用于服务器)比单CPU主板要贵。
(2)相同市场定位的主板配置不同
例如有的主板内装SCSI卡或声卡、显示卡,二级缓存容量大小不同也会影响主机价格。
(3)各厂家选用原材料不同
由于各厂家选用原材料的品质不同,就会造成成本上的差异,另外厂家提供的包装和说明书以及电缆线的多少都会有差异。
(4)主板是进口的还是国产的以及是否为正宗渠道的代理产品,也会造成一定的价格差。
总之,价格是应考虑的一方面,但不能是全部,较高的价格可能意味着较好的产品和服务。
注:具体地讲,如果想组装一台高档电脑,主板可以选择MegaStar、华硕或微星等的产品,比如:MegaStar KTX、华硕TX97、微星5145等,这些主板的共同特点是:符合微软PC97和PC98标准,ATX架构,采用Intel TX、LX、BX等套片,支持Ultra DMA33硬盘接口,512KB同步猝发二级缓存;有50/60/66.7/75MHz时钟跳线,支持各档奔腾、K6、6X86MX等新型CPU;双电压,有2.5/2.7/2.8/2.9/3.2V等CPU内核电压跳线;2~3个168线内存插槽和4个72线内存插槽;支持CPU过热报警;双USB接口。如果使用这些高档主板,最好使用SDRAM(同步RAM),以便充分发挥性能,使整机性能能提高10%以上。
主板发展的趋势
如果把 CPU比做PC的心脏,那么躯干就是主板了。几乎所有的PC部件都会连接到主板上,主板性能的好坏,将直接影响到整个系统的运作情况。下面谈谈目前主板发展趋势,使大家对未来电脑的一些新技术能够有初步的了解。
1.芯片组的性能越来越高
谈到主板当然离不开芯片组,芯片组担负着联系 PC各部件的重任,其重要性仅次于CPU。时下,Pentium级的芯片组方面,常见的有Intel的82430TX及台湾SiS、VIA和ALi等的同级别芯片组。而PentiumⅡ芯片组目前则有Intel 82440LX、82440BX、82440EX等。
1998年,由于Intel力图扩大Pentium Ⅱ的市场份额,将会逐步停止TX芯片组的生产,相信其它的非主流厂商会利用这一机会填补Intel退出所留下的空间,而且会在芯片组的性能方面作一些大的改进。比如一些芯片组厂商已推出支持AGP的Pentium级芯片组,使得可以在Pentium系统中使用AGP显卡。另外支持100MHz外频的基于Socket 7架构的芯片组已蓄势待发。
440BX的芯片组是1998年第二季度Intel正式发布的,它将支持100MHz的外频,从而解决低外频(66MHz)造成的速度瓶颈,440BX将不再支持EDO内存,即使是SDRAM也要求速度达到100MHz。在1998年的第三季度,与Pentium Ⅱ Xeon 一起推出了440GX AGP和450NX PCI7芯片组,支持工作频率高于350MHz的Slot 2架构的Pentium Ⅱ Xeon,且可以同时支持四个Pentium Ⅱ。
2.AGP将成为显示卡接口新标准
AGP(Accelerated Graphics Prot,图形加速端口)是Intel于1996年提出的一个开放的新总线标准,目前仅针对显示接口,也就是说,AGP扩展槽里只能插入AGP显卡。虽然AGP标准早已提出,但直到1997年Intel推出支持AGP的82440LX芯片组后,主板上才开始有 AGP插槽。相信在今后,显示卡接口标准会完成从PCI到 AGP的转变。100MHz外频主板即将流行,1998年已有支持100MHz外频的芯片组出现,当然也会出现支持100MHz外频的主板了。从技术角度来看,随着CPU工作频率的不断提高,66M Hz的外频已成为影响CPU效能发挥的瓶颈,所以提高外频是必然的趋势。
PentiumⅡ方面,440BX芯片组已面世,相应的主板已大量上市。而 Socket7方面,芯片组已做好准备,AMD的支持100MHz外频的K6 3D处理器也已面市。。据悉,AMD正在与周边厂商加强合作,如SiS、微星等,以期尽快推出 K6 3D及相应主板。不管怎样,具有100MHz外频的主板已经流行起来。
3.国内市场主板走向中文化
目前,各主板厂都在加强主板中文化的工作,中文包装、中文使用手册相信在1998年会被各厂商普遍采用,这将大大方便用户的使用。至于更深层的中文化,即中文化BIOS,现在仅有微星一家在做,中文BIOS的出现,确实对大多数中国用户提高最基本而又很重要的BIOS设置能力有很大的帮助。
微星公司已表示,1998年将继续完善中文化的工作,如在中文BIOS中加入中文联机帮助等。相信其他厂商也会跟进推出中文BIOS产品,毕竟可以吸引一部分用户。
4.AT与ATX此消彼长
ATX规格的主板已出现很长时间了,它改进了AT规格主板的一些不足之处,使主板设计更为合理。另外,ATX主板采用ATX电源,具有远程Modem唤醒开机,键盘开/关机等功能。不过,就目前来看,AT主板仍然还有市场,一方面不少用户对 ATX的优点还缺乏充分的认识,另一方面,价格也是一个主要因素,一般ATX主板价格比同等级的AT主板高100元左右,再加上 ATX电源及机箱的价格也较高,因此 ATX虽然是一种先进规格,但发展不是很快。不过,很快ATX将成为一种潮流。
5.Ultra DMA33、USB等现今已有一定应用的技术或规格,会在今后继续发展,更加成熟,而且周边设备的支持会更加完善。
6.Slot 2
英特尔将推出一系列基于其下一代Slot 2插槽的Pentium Ⅱ处理器(代号Deschutes)。Slot 2能更好地发挥Pentium Ⅱ的威力,而已推出的Pentium ⅡXeon在设计上也有较大改进,二者相得益彰,将成为英特尔公司主攻企业级计算市场的两把利刃。针对高档计算机市场设计的Slot 2的主要市场是包括服务器和工作站的产品。
第一代Pentium Ⅱ Slot 2处理器的入门主频为400MHz(如Pentium ⅡXeon),它同系统中其它单元交换数据的速度达到100MHz,内置有512KB二级高速缓存。菲思特介绍说,今后英特尔公司将推出二级缓存为1MB和2MB的CPU。
英特尔公司的发言人指出,Slot 2与Slot 1相比,有许多不同。首先,Slot 2插槽更长,CPU本身也都要大一些。具体说来,CPU芯片的大小接近于高能奔腾芯片。
其次,Slot 2能够胜任更高要求的多用途计算处理,这是进入高端企业计算市场的关键所在。在标准服务器设计中,一般厂商只能同时在系统中采用两个 Pentium Ⅱ处理器,而有了Slot 2设计后,可以在一台服务器中同时采用 8个处理器。毫无疑问,这能造就出功能更强大、用途更广泛的计算机系统。
所有基于Slot 2的Pentium Ⅱ都采用先进的0.25微米工艺制造。
主板的”双通道 的意思
双通道内存技术其实是一种内存控制和管理技术,它依赖于芯片组的内存控制器发生作用,在理论上能够使两条同等规格内存所提供的带宽增长一倍。它并不是什么新技术,早就被应用于服务器和工作站系统中了,只是为了解决台式机日益窘迫的内存带宽瓶颈问题它才走到了台式机主板技术的前台。在几年前,英特尔公司曾经推出了支持双通道内存传输技术的i820芯片组,它与RDRAM内存构成了一对黄金搭档,所发挥出来的卓绝性能使其一时成为市场的最大亮点,但生产成本过高的缺陷却造成了叫好不叫座的情况,最后被市场所淘汰。由于英特尔已经放弃了对RDRAM的支持,所以目前主流芯片组的双通道内存技术均是指双通道DDR内存技术,主流双通道内存平台英特尔方面是英特尔 865、875系列,而AMD方面则是NVIDIA Nforce2系列。
双通道内存技术是解决CPU总线带宽与内存带宽的矛盾的低价、高性能的方案。现在CPU的FSB(前端总线频率)越来越高,英特尔 Pentium 4比AMD Athlon XP对内存带宽具有高得多的需求。英特尔 Pentium 4处理器与北桥芯片的数据传输采用QDR(Quad Data Rate,四次数据传输)技术,其FSB是外频的4倍。英特尔 Pentium 4的FSB分别是400、533、800MHz,总线带宽分别是3.2GB/sec,4.2GB/sec和6.4GB/sec,而DDR 266/DDR 333/DDR 400所能提供的内存带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec。在单通道内存模式下,DDR内存无法提供CPU所需要的数据带宽从而成为系统的性能瓶颈。而在双通道内存模式下,双通道DDR 266、DDR 333、DDR 400所能提供的内存带宽分别是4.2GB/sec,5.4GB/sec和6.4GB/sec,在这里可以看到,双通道DDR 400内存刚好可以满足800MHz FSB Pentium 4处理器的带宽需求。而对AMD Athlon XP平台而言,其处理器与北桥芯片的数据传输技术采用DDR(Double Data Rate,双倍数据传输)技术,FSB是外频的2倍,其对内存带宽的需求远远低于英特尔 Pentium 4平台,其FSB分别为266、333、400MHz,总线带宽分别是2.1GB/sec,2.7GB/sec和3.2GB/sec,使用单通道的DDR 266、DDR 333、DDR 400就能满足其带宽需求,所以在AMD K7平台上使用双通道DDR内存技术,可说是收效不多,性能提高并不如英特尔平台那样明显,对性能影响最明显的还是采用集成显示芯片的整合型主板。
NVIDIA推出的nForce芯片组是第一个把DDR内存接口扩展为128-bit的芯片组,随后英特尔在它的E7500服务器主板芯片组上也使用了这种双通道DDR内存技术,SiS和VIA也纷纷响应,积极研发这项可使DDR内存带宽成倍增长的技术。但是,由于种种原因,要实现这种双通道DDR(128 bit的并行内存接口)传输对于众多芯片组厂商来说绝非易事。DDR SDRAM内存和RDRAM内存完全不同,后者有着高延时的特性并且为串行传输方式,这些特性决定了设计一款支持双通道RDRAM内存芯片组的难度和成本都不算太高。但DDR SDRAM内存却有着自身局限性,它本身是低延时特性的,采用的是并行传输模式,还有最重要的一点:当DDR SDRAM工作频率高于400MHz时,其信号波形往往会出现失真问题,这些都为设计一款支持双通道DDR内存系统的芯片组带来不小的难度,芯片组的制造成本也会相应地提高,这些因素都制约着这项内存控制技术的发展。
普通的单通道内存系统具有一个64位的内存控制器,而双通道内存系统则有2个64位的内存控制器,在双通道模式下具有128bit的内存位宽,从而在理论上把内存带宽提高一倍。虽然双64位内存体系所提供的带宽等同于一个128位内存体系所提供的带宽,但是二者所达到效果却是不同的。双通道体系包含了两个独立的、具备互补性的智能内存控制器,理论上来说,两个内存控制器都能够在彼此间零延迟的情况下同时运作。比如说两个内存控制器,一个为A、另一个为B。当控制器B准备进行下一次存取内存的时候,控制器A就在读/写主内存,反之亦然。两个内存控制器的这种互补“天性”可以让等待时间缩减50%。双通道DDR的两个内存控制器在功能上是完全一样的,并且两个控制器的时序参数都是可以单独编程设定的。这样的灵活性可以让用户使用二条不同构造、容量、速度的DIMM内存条,此时双通道DDR简单地调整到最低的内存标准来实现128bit带宽,允许不同密度/等待时间特性的DIMM内存条可以可靠地共同运作。
支持双通道DDR内存技术的台式机芯片组,英特尔平台方面有英特尔的865P、865G、865GV、865PE、875P以及之后的915、925系列;VIA的PT880,ATI的Radeon 9100 IGP系列,SIS的SIIS 655,SIS 655FX和SIS 655TX;AMD平台方面则有VIA的KT880,NVIDIA的nForce2 Ultra 400,nForce2 IGP,nForce2 SPP及其以后的芯片。
AMD的64位CPU,由于集成了内存控制器,因此是否支持内存双通道看CPU就可以。目前AMD的台式机CPU,只有939接口的才支持内存双通道,754接口的不支持内存双通道。除了AMD的64位CPU,其他计算机是否可以支持内存双通道主要取决于主板芯片组,支持双通道的芯片组上边有描述,也可以查看主板芯片组资料。此外有些芯片组在理论上支持不同容量的内存条实现双通道,不过实际还是建议尽量使用参数一致的两条内存条。
内存双通道一般要求按主板上内存插槽的颜色成对使用,此外有些主板还要在BIOS做一下设置,一般主板说明书会有说明。当系统已经实现双通道后,有些主板在开机自检时会有提示,可以仔细看看。由于自检速度比较快,所以可能看不到。因此可以用一些软件查看,很多软件都可以检查,比如cpu-z,比较小巧。在“memory”这一项中有“channels”项目,如果这里显示“Dual”这样的字,就表示已经实现了双通道。两条256M的内存构成双通道效果会比一条512M的内存效果好,因为一条内存无法构成双通道。
主板电容、cpu供电扫盲班
个人觉得要oc(over clock)也就是超频,选块好主板是很关键的,对于超频玩家,主板的cpu供电部分由为重要。所以我这只菜鸟就到网上google了一下,发现了一点有用的东西,愿意和大家分享!
主板上常用的电源电路有两种形式,一种是开关电源,由双MOSFT和电感、电容组成。一种是低压差线性调压芯片组成的调压电路。这两种电路都能够为主板上不同的芯片和组件提供精密的电源。同样的,主板上的组件也分许多种,有的对电压敏感,有的对电流敏感。因此在设计上必须为这些不同的组件设计不同的供电和参考电压电路。 对于CPU供电电路,由于现在的CPU功耗非常大,从低负荷到满负荷,电流的变化是非常大的。为了保证CPU能够在快速的负荷变化中,不会因为电流供应不上而歇菜,CPU供电电路要求具有非常快速的大电流响应能力。供电电路中的MOSFET,电感线圈和电容都会影响到这一能力。一个最理想的状态是,厂商使用最快速的MOSFET,高磁通量粗导线的电感线圈,以及超低ESR的输入输出电容。但实际上,出于成本的考虑,并不能实现。不同的主板厂商,对选料的着重点不一样。甲厂商可能会选用快速的MOSFET,快速的MOSFET的开关噪声比较小,这样就可以将输入输出的电容等级下降一点。Intel的主板使用高导磁的电感磁芯(降低了线圈的损耗电流),因此它的线圈使用单根比较粗一点的就可以了。但大多数厂商会使用便宜一点的磁芯,使用三线并绕的方式来解决,这样即使损耗大一些,线圈也不会发太多的热。对于输入输出电容,一般的要求是,输入电容要尽可能的大,相对容量的要求,对ESR的要求可以降低一点,因为输入电容主要是耐压,其次要吸收MOSFET的开关脉冲,对输出电容,耐压得要求和容量可以低一点(Intel的主板,这部分的电容往往都是4~6.3V,470~680左右的容量),ESR的要求要高一点,因为要保证足够的电流通过量,但并不是越低越好,低ESR电容会引起开关电路振荡,而消振电路比较复杂,而且会增加很大的成本。因此厂商往往会在实验电路板上得出一个合适的参数值,然后以此作为元件选用参数,这样可以不用消振电路。
对于发生了电容爆浆这样的事件,要从几方面考虑,开关电路是否短路了,是否有开关管损坏,输入的电源质量如何。只有在确定了是由于电容品质或者电容老化导致的爆浆后,更换电容才有实际的意义。电容爆浆是由于电容发热引起的,发热是由大电流引起的,不正常的大电流,一般是由于用电组件短路或者超压导致电容极间击穿短路。一般情况下,开关电源的输出电容是不容易爆浆的,因为这部分电容耐电流的能力很强,而且工作电压不高,在发生短路故障后,开关管自动保护,这部分电容就不工作了,爆浆的大部分都是输入电容。这部分电容的工作电压高达12V,对于使用劣质电源的用户来说,峰值电压还可能会更高一点。开关脉冲会达到工作电压的2~5V,如果MOSFET的质量不是很好,或者由于电路设计的硬伤,这个倍率还会高些。我们以P4的2V为标准,这要求输入电容的耐压值至少在2*2~2*5V即4V~10V之间。现在你明白了为什么电容的耐压值一般都是在6.3~16V之间了吧。
更换电容时,我们一般选用高耐压值的电容。因为在市场上,我们很难买到低ESR的电容,这时,通过提高电容的等级,可以一定程度上弥补这样缺陷。一般情况下,使用16V,3300微法左右的输入电容替换是没有什么问题的。
对于电容的品质问题,这里也要略加说明,一般来说,主板的电容要求都是精度比较高的,但没有高到精密电源的等级。日产电容如Rubycon,nichicon等,精度非常好,寿命也比较长,但价格比较高,而且很难买到合适的正品。港产或者台产的电容,精度差,寿命也短,但价格便宜,供货量大,所以主板厂商选择这些元件是比较头痛的。有时候,并不是出于成本的考虑,rubycon这样的电容大厂,对于用户都是限量供应的,如果一个主板厂商,造板子时突然说电容供货跟不上了,那还不是等于自杀,而且电解电容还不能长期保存,在没有定期充放电的情况下,会失效。台湾电容产业这两年有不小的进步,主要是购买了日本和德国的技术,产量比较大,采购也容易,当然他们的产品质量和日产德产的还有差距。实验室条件下,台产Gluxcon和Rubycon比较,相同容量,台产货效能是日产货的80%。也就是说,你就认为3300微法的Gluxcon就是2200微法的好了。
我们不能光看电容就确定主板的好坏,电容并不是主板最主要的部件,有些地方,省掉了也不影响运行。相反,主板的品检标准非常重要,如果厂商能够坚持严格的品检,那么使用什么元件都不重要,因为品检时的环境不可能是日常使用环境中能够达到的,相反,如果厂商没有良好的设计和试验环境,最终产品没有品检,那么就无法发现元件搭配中的问题,即使全是名牌元件,搭出来的还是不稳定有缺陷的产品。
PS:
一 电容品牌
电容厂商 电容品牌
日系名厂 Nichicon Rubycon  Sanyo Panasonic CHEMICON
二线厂商 OST Jackcon Nippon Teapo Taicon
其他厂商 Sacon GSC Chocon Fcon
就我这个菜鸟知道的,rubycon是大名鼎鼎的红宝石,gsc是大名鼎鼎的暴浆王。其余大家补充。
二。主板管用电容品牌(连大名鼎鼎的dfi的都没有,我好没面子,实在是没玩过dfi呀!大家补充)
主板厂商 贯用电容品牌 主板厂商 贯用电容品牌
升技       Rubycon        华擎 CHEMICON的KZGKZE
华硕   Nichicon CHEMICON  映泰   OST
磐正    Sanyo OST GSC     技嘉 Rubycon  OST CHEMICON的KZG
捷波         GSc          联冠    Fcon
美达        Choyo         微星   OST    CHEMICON的KZG
昂达      CHEMICON的KZG  七彩虹  Taicon
双捷       Chocon        硕泰克  Sanyo Sacon
双敏        OST          DFI     CHEMICON的KZG
主板报警音长短分类
Award BIOS的报警音:
1短:系统正常启动。没有任何问题。
2短:常规错误,请进入CMOS Setup,重新设置不正确的选项。
1长1短:RAM或主板出错。换一条内存试试,若还是不行,只好更换主板。
1长2短:显示器或显示卡错误。
1长3短:键盘控制器错误。检查主板。
1长9短:主板Flash RAM或EPROM错误,BIOS损坏。换块Flash RAM试试。
不断地响(长声):内存条未插紧或损坏。重插内存条,若还是不行,只有更换一条内存。
重复短响:电源有问题。
无声音无显示:电源有问题。
AMI BIOS的报警音代码:
1短:内存刷新失败。更换内存条。
2短:内存ECC较验错误。在CMOS Setup中将内存关于ECC校验的选项设为Disabled就可以解决,不过最根本的解决办法还是更换一条内存。
3短:系统基本内存(第1个64kB)检查失败。换内存。
4短:系统时钟出错。
5短:中央处理器(CPU)错误。
6短:键盘控制器错误。
7短:系统实模式错误,不能切换到保护模式。
8短:显示内存错误。显示内存有问题,更换显卡试试。
9短:ROM BIOS检验和错误。
1长3短:内存错误。内存损坏,更换即可。
1长8短:显示测试错误。显示器数据线没插好或显示卡没插牢。
最新 AMI Bios 设置全程图解
花了几个星期的时间终于把这个文章完全写玩了,呵呵。于是迫不及待的传上来!文章很长,看上
去有一点累,但是我也是为了所有的读者都能看懂,而且尽量讲的详细一些,(想必这应该是国内目前
最完善的Bios教程吧!)希望对你有一点用!
对于一个热衷于电脑的用户来说,最大的乐趣就是发觉计算机的潜能,了解计算机的一些技术,计
算机的Bios设置对于很多初用电脑人的来说很是深奥,甚至一些计算机的老用户还不了解Bios,因为计
算机Bios涉及了很多计算机内部硬件和性能差数设置,对于一般不懂电脑的人来说有一定的危险性,加
之一般Bios里面都是英文,这个对于英语好的人来说没有问题,但是这毕竟是中国,还有很多人对英语
并不是很懂,所以很多人不敢轻易涉足!为了把大家的这些疑惑解决,我利用空闲时间把Bios的设置用
图文解释给大家看看,希望能给一部分人一些帮助!但是因为个人知识有限,所以可能其中有一些遗漏
或者不正确的解释,请大家一起来探讨指正!谢谢各位的支持!
我找了两种Bios的计算机分别是:华硕的AMI BIOS和升技的AWARD BIOS,这也是目前两种主流的
Bios,及算是不同品牌的主板,他们的Bios也是与这两种Bios的功能和设置大同小异,但是一般不同的
主板及算是同一品牌的不同型号的主板,他们的Bios又还是有区别的,所以一般不同型号主板的Bios不
能通用!
先以华硕的AMI Bios为例,介绍一下AMI Bios的设置:
开启计算机或重新启动计算机后,在屏幕显示如下时,按下“Del”键就可以进入Bios的设置界面
要注意的是,如果按得太晚,计算机将会启动系统,这时只有重新启动计算机了。大家可在开机后
立刻按住Delete键直到进入Bios。有些品牌机是按F1进入Bios设置的,这里请大家注意!
进入后,你可以用方向键移动光标选择Bios设置界面上的选项,然后按Enter进入子菜单,用ESC键
来返回主单,用PAGE UP和PAGE DOWN键或上下( ↑↓ )方向键来选择具体选项回车键确认选择,F10键保
留并退出Bios设置。
接下来就正式进入Bios的设置了!
首先我们会看到(如图2)
一.Main(标准设定)
此菜单可对基本的系统配置进行设定。如时间,日期等
图2
其中
Primary/Secondary IDE Master/Slave  是从主IDE装置。
如果你的主板支持SATA接口就会有Third/Fourth IDE Mastert或者更多,他们分别管理例电脑里面
各个IDE驱动装置的,如硬盘,光驱等等!因为各个主板的设置不同,所以在此就不详细解说这里的设置
了,但是这些一般不用用户自己去设置,一般用默认的就可以,如果有特殊要求,建议用户自己对照说
明书的说明进行设置,或者在论坛里单独提问!
System Information
这是显示系统基本硬件信息的,没有什么好讲(如图3)
图3
基本设置了解后就进入高级设置了!
二.Advanced(进阶设置)如图4:
图4
这里就是Bios的核心设置了,新手一定要小心的设置,因为其直接关系系统的稳定和硬件的安全,千
万不可以盲目乱设!
1.大家先看到的是“JumperFree Configuration”(不同品牌的主板有可能不同,也可能没有)再
这里可以设置CPU的一些参数,对于喜欢超频的朋友来说这里就是主攻地!(如图)
大家可以看到有一个“AI Overclock Tumer”的选项,其中有一些选项,如上图,其中又以
“Manual”为关键,选择后会看到如下图:
对于CPU超频爱好者这些东西应该了如指掌,CPU的外频设置(CPU External Frequency)是超频的
关键之一,CPU的主频(即我们平时所说的P4 3.0G等等之内的频率)是由外频和倍频相乘所得的值,比
如一颗3.0G的CPU在外频为200的时候他的倍频就是15,(200MHz*15=3000MHz)。 外频一般可以设定的范
围为100MHz到400MHz,但是能真正上300的CPU都不多,所以不要盲目的设置高外频,一般设定的范围约
为100-250左右,用户在设定中要有耐心的一点点加高,最好是以1MHz为步进,一点点加,以防一次性
加到过高而导致系统无法正常使用甚至CPU损坏!
内存频率设定(DRAM Frequency) 使用此项设定所安装内存的时钟,设定选项为: 200MHz,
266MHz,333MHz, 400MHz, Auto。
AGP/PCI设备频率设定(AGP/PCI Frequency),本项目可以修改AGP/PCI设备的运行频率频率,以获
得更快的系统性能或者超频性能,设定值有:[Auto],[66.66/33.33],[72.73/36.36]。但是请用户适当
设置,如果设置不当可能导致AGP/PCI设备不能正常使用!
电压设置就不用多讲呢,就是设置设备的工作电压,建议一般用户不要轻易修改,以防导致设备因
为电压不正确而损坏!即算用户要修改也一定不能盲目的修改,以步进的方式一点点加压,最高值最好
不要超过±0.3V。
2. CPU Configuration (CPU设定)本项目可以让你知道CPU的各项指数和更改CPU的相关设定。
这里可以了解CPU的各种信息,因为这是华硕最新的Bios程序,所以其增加了一些对新CPU的信息,
比如有三级缓存显示,还有增加了对Intel64位CPU的增强型选项!但是这些项目对于一般的CPU没有什么
意义!这里的选项一些基本上不用更改,但是,这里最有意义的选项就是最后一个Hyper Threading
Technology选项了,这是开启P4 CPU超线程的开关,用P4超线程CPU的用户应该知道有些程序并不能完好
的支持超线程技术,甚至有时导致死机,比如用WinXP SP1的IE上网的P4超线程用户就有频繁死机的CPU
占用率为100%的情况,这就是因为其不能完全支持超线程技术(但是只要更新到SP2或者更新升级系统
就没有此问题了)这时我们就可以关闭CPU的超线程技术,只要把其值设为Disabled就可以了!但是这样
就不能完全发挥P4超线程CPU的性能了!
3. Chipset(高级芯片组特征设置)使用此菜单可以修改芯片组寄存器的值,优化系统的性能表现

Configure SDRAM Timing by
设置决定SDRAM 的时钟设置是否由读取内存模组上的SPD (SerialPresence Detect) EEPROM 内容决
定。设置为Enabled将根据SPD自动设置其中的项目,如果你把其选项选择未为Disabled,则会出现以下
项目: SDRAM CAS# Latency, DRAM RAS# Precharge, DRAM RAS# to CAS Delay,DRAM precharge
Delay和DRAM Burst Length。如果您对芯片组不熟悉请不要修改这些设定。
SDRAM CAS# Latency(SDRAM CAS#延迟)
项控制在SDRAM接受并开始读指令后的延迟时间(在时钟周期内) 的。设定值为:2, 2.5, 3.0
(clocks)。值越小则性能越强!但是稳定性相对下降!
DRAM RAS# Precharge(Precharge命令延时)
本项目控制当SDREM送出Precharge命令后,多少时间内不再送出命令。设定值有:4,3,2(clocks)
RAS to CAS Delay(RAS至CAS的延迟)
当DRAM 刷新后,所有的行列都要分离寻址。此项设定允许您决定从RAS (行地址滤波) 转换到CAS (
列地址滤波)的延迟时间。更小的时钟周期会使DRAM有更快的性能表现。设定值有:4,3,2(clocks)
DRAM precharge Delay(脉冲周期)
这个设置是用来控制提供给SDRAM参数使用的SDRAM时钟周期!设定值有:8,7,6,5,(clocks)
SDRAM Burst Length(SDRAM爆发存取长度)
此设置允许你设置DRAM爆发存取长度的大小。爆发特征是DRAM在获得第一个地址后自己预测下一个
存取内存位置的技术。使用此特性,你必须要定义爆发长度,也就是开始地址爆发脉冲的实际长度。同
时允许内部地址计数器能正确的产生下一个地址位置。尺寸越大内存越快。设定值: 4,8(clocks)。
AGP Aperture Size (AGP内存分配)
此项用来控制有多少系统内存可分配给AGP卡显示使用。孔径是用于图形内存地址空间一部分PCI内
存地址范围。进入孔径范围内的主时钟周期会不经过翻译直接传递给AGP。设定值为:4MB,8MB,16MB,
32MB,64MB,128MB,和256 MB。
4.OnBoard Devices Configuration(集成设备设定)
这里是管理各种主板集成硬件设施的一些选项,用户基本上不用更改其设置!所以在此不再赘叙!
如需改动,请查看主板说明书!
5.PCI Pnp(即插即用设备设置)
这里是设置即插即用和PCI的高级设定项目,一般用户不需要改动任何项目,都保持默认就可以了。
在进行本设置设定时,不正确的数值将导致系统损坏!
6.USB Configuration(USB装置设置)
USB端口装置设定,大家一看就明白,无须多讲!只是那个传输模式里面有个FullSpeed和HiSpeed,
如果大家是USB2.0的就把它设置成HiSpeed,FullSpeed是模拟高速传输,没有HiSpeed的快!
三.Power(电源管理设置)如图:
前面四个没有什么好讲,因为主板品牌不同,所以可能有些用户没有上面的选项,主要有APM
Configuration(高级电源设置)和Hardware Monitor(系统监控)两个选项。
1.    APM Configuration(高级电源设置)
2.Hardware Monitor(系统监控)
四.Boot(启动设备设置)
本选单是更改系统系统启动装置和相关设置的,再Bios中较为重要。
1.    Boot Device Priority(启动装置顺序)
本项目是设置开机时系统启动存储器的顺序,比如大家在安装操作系统时要从光驱启动,就必须把
1st Device Priority设置成为你的光驱,图上设置的是硬盘,所以当系统开机时第一个启动的是硬盘,
建议大家如果不是要从光驱启动,就把第一启动设置成为硬盘,其他的启动项目设置成为Disable,这样
系统启动就会相对快一点,因为系统不用去搜索其他多余的硬件装置!
2.    Boot Settings Configuration(启动选项设置)
这里是设置系统启动时的一些项目的!它可以更好的方便用户的习惯或者提升系统性能。
1.    QuickBoot(快速启动)设置
本项目可以设置计算机是否在启动时进行自检功能,从而来加速系统启动速度,如果设置成
“Disable”系统将会在每次开机时执行所有自检,但是这样会减慢启动速度!一般设置为“Enabled”
2.    Full Screen Logo(全屏开机画面显示设置)
这里是设置是否开启开机Logo的设置的,如果你不想要开机Logo就可以设置为“Disable”
3.    Add On ROM Display Mode(附件软件显示模式)
本项目是让你设定的附件装置软件显示的模式,一般设置成“Force BIOS”就可以了。
4.    Bootup Nun-Lock(小键盘锁定开关)
就是设置开机时是否自动打开小键盘上的Num-Lock。一般设置为On
5.    PS/2 Mouse Support
此项目时设置是否支持PS/2鼠标功能。设定为AUTO就可以。
6.    Typematic Rate(键盘反映频率设置)
这个就是让你选择键盘反映快慢频率的选项,一般设置为“fast”
7.    Boot To OS/2(OS/2系统设置)
本项目让你选择是否启动OS/2作业系统兼容模式,一般设置为“No”
8.    Wait For ‘F1’ If Error (错误信息提示)
本项目是设置是否在系统启动时出现错误时显示按下“F1”键确认才继续进行开机,一般设置为
“Enabled”
9.     Hit ‘DEL’Messgae Display (按DEL键提示)
这个选项选择是否在开机时显示按下Del键进入Bios设定的提示,如果选择“Disable”将不会看到
本文章开头的那句“Press DEL to Run Steup,Presss TAB to display BIOS Post Message”的提示,
一般设置为“Enabled”
10.    Interrupt 19 Capture(PCI内建程序启动设置)
当你使用PCI卡有自带软件时请将此设置为“Enabled”
3.    Security(安全性能选项)
1.Change Supervisor Password(管理员密码设定)
管理员密码设定,当设定好密码后会多出几个选项,其中有一个“User Password”选项,这是用户
密码设定,就像Windows的用户密码,他们可以设置成多种不同的访问权限(Use Access Level),其中

No Access    使用者无法存储Bios设置
View Only    使用者仅能查看Bios设置不能变更设置
Limited      允许使用者更改部分设置
Full Access  使用者可以更改全部的Bios设置
还有几个常用的选项
Clear User Password    清除密码
Password  Check        更改密码
2.    Boot Sector Virus Protection(防病毒设置)
本选项可以开启Bios防病毒功能,默认值为关闭“Disabled”。
五.EXIT(退出Bios程序设置)
退出就没有什么好说的了!但是有一个更快捷的方法就是不管在那个设置里面我们都可以随时按F10
保存退出!